Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ceramides Mediate Insulin-Induced Impairments in Cerebral Mitochondrial Bioenergetics in ApoE4 Mice

Version 1 : Received: 11 September 2023 / Approved: 11 September 2023 / Online: 12 September 2023 (14:19:04 CEST)

A peer-reviewed article of this Preprint also exists.

Carr, S.T.; Saito, E.R.; Walton, C.M.; Saito, J.Y.; Hanegan, C.M.; Warren, C.E.; Trumbull, A.M.; Bikman, B.T. Ceramides Mediate Insulin-Induced Impairments in Cerebral Mitochondrial Bioenergetics in ApoE4 Mice. Int. J. Mol. Sci. 2023, 24, 16635. Carr, S.T.; Saito, E.R.; Walton, C.M.; Saito, J.Y.; Hanegan, C.M.; Warren, C.E.; Trumbull, A.M.; Bikman, B.T. Ceramides Mediate Insulin-Induced Impairments in Cerebral Mitochondrial Bioenergetics in ApoE4 Mice. Int. J. Mol. Sci. 2023, 24, 16635.

Abstract

Alzheimer’s disease (AD) is the most common form of neurodegenerative disease worldwide. A large body of work implicates insulin resistance in the development and progression of AD such that AD may be a form of brain insulin resistance. Moreover, impairment in mitochondrial function, a common symptom of insulin resistance, now represents a fundamental aspect of AD pathobiology. Ceramides are a class of bioactive sphingolipids that have been hypothesized to drive insulin resistance. Here we describe preliminary work that tests the hypothesis that hyperinsulinemia pathologically alters cerebral mitochondrial function in AD mice via accrual of the ceramides. Homozygous male and female ApoE4 mice were given chronic injections of PBS (control), insulin, myriocin (an inhibitor of ceramide biosynthesis), or insulin and myriocin over four weeks. Cerebral ceramide content was assessed using liquid chromatography-mass spectrometry. Mitochondrial oxygen consumption rates were measured with high-resolution respirometry, and H2O2 emissions were quantified via biochemical assays on brain tissue from the cerebral cortex. Significant increases in brain ceramides and impairments in brain oxygen consumption were observed in the insulin-treated group. These hyperinsulinemia-induced impairments in mitochondrial function were reversed with the administration of myriocin. Altogether, these data demonstrate a causative role for insulin in promoting brain ceramide accrual and subsequent mitochondrial impairments that may be involved in AD expression and progression.

Keywords

insulin resistance; Alzheimer’s disease; ApoE4; dyslipidemia; ceramides; mitochondrial bioenergetics; cerebral cortex

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.