Submitted:
05 September 2023
Posted:
06 September 2023
You are already at the latest version
Abstract
Keywords:
MSC: 54A40; 03E72; 54E35
1. Introduction
- (A1)
- If , then ;
- (A2)
- ;
- (B1)
- ;
- (A3)
-
, s.t. s.t. .An Erceg pseudo-metric p is called an Erceg metric if it further satisfies
- (A4)
- If , then ,
- (B2)
- .
- (B3)
- .
- (B4)
- .
2. Preliminaries
- (D1)
- If , then ;
- (D2)
- ;
- (D3)
- ;
- (D4)
- .
- (D5)
- If , then
- (a)
- , ;
- (b)
- If , then .
- (1)
- ;
- (2)
- .
3. The relationships between four kinds of fuzzy metrics on
4. The product of countable metric spaces
- (1)
- For each , ;
- (2)
- The mapping p is a Deng pseudo-metric on ;
- (3)
- The space is the product space of .
- ,
5. -locally finite property
- (1)
- Either or is true, depending on whether U follows or precedes V in the ordering;
- (2)
- In either case
- (1)
- is an open set;
- (2)
- .
- (1)
- If there is a fixed number such that for each , then ;
- (2)
- If such a fixed number is non-existent, then ;
- (3)
- If , then there at most exists a such that .
6. Two interrelated mappings
7. Metrization theorem
8. Metrization theorem
- (a)
- .
- (b)
- Each member in is the union of some members in .
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- R.H. Bing, Metrization of topological spaces, Canadian J. Math. 3 (1951) 175–186.
- C.H. Dowker, An embedding theorem for paracompact metric spaces, Duke Math. J. 14 (1947) 639–645.
- J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. polytech. Osaka City Univ. 1 (1950) 93–100.
- A.H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948) 977–982.
- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353.
- J.A. Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl. 18 (1973) 734–742.
- P. Chen, Metrics in L-fuzzy Topology, China Science Press, Beijing, 2017.
- Y. Yue, F.G. Shi, On fuzzy pseudo-metric spaces, Fuzzy Set Syst. 161 (2010) 1105–1116.
- P. Chen, P. Duan, Research on a kind of pointwise parametric in L lattices, Fuzzy Syst. Math. 30 (2016) 23–30. (in Chinese).
- P. Chen, F.G. Shi, Further simplification of Erceg metric and its properties, Adv. Math. 36 (2007) 586–592. (in Chinese).
- Z.K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982) 74–95.
- Z.K. Deng, M-uniformization and metrization of fuzzy topological spaces, J. Math. Anal. Appl. 112 (1985) 471–486.
- M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 205–230.
- A. George, P. A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst. 64 (1994) 395–399.
- V. Gregori, S. V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Set Syst. 170(1) (2011) 95–111.
- V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Set Syst. 125(2) (2002) 245–252.
- P. Diamond, P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Set Syst. 35(2) (1990) 241–249.
- Y.M. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Doklady Akad. Nauk S.S.S.R.N.S. 77 (1951) 197–200.
- B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl 58 (1977) 559–571.
- D.S. Kim, Y.K. Kim, Some properties of a new metric on the space of fuzzy numbers, Fuzzy Set Syst. 145 (2004) 395–410.
- J.H. Liang, A few problems in fuzzy metric spaces, Ann. of Math. 6A(1) (1984) 59–67. (in Chinese).
- J.H. Liang, Pointwise characterizations of fuzzy metrics and its applications, Acta Math. Sin. 30 (1987) 733–741. (in Chinese).
- M.K. Luo, A note on fuzzy paracompact and fuzzy metric, J. Sichuan Univ. 4 (1985) 141–150. (in Chinese).
- S. Morillas, V. Gregori, G. Peris-Fajarnés, A fast impulsive noise color image filter using fuzzy metrics, Real-Time Imaging 11(5-6) (2005) 417–428.
- F.G. Shi, Pointwise pseudo-metrics in L-fuzzy set theory, Fuzzy Set Syst. 121 (2001) 209–216.
- A.P. S̆ostak, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996) 662–701.
- L.C. Yang, Theory of p.q. metrics on completely distributive lattices, Chinese Sci. Bull. 33 (1988) 247–250. (in Chinese).
- Y. Yue, F.G. Shi, On fuzzy pseudo-metric spaces, Fuzzy Set Syst. 161 (2010) 1105–1116.
- P. Eklund, W. Gäbler, Basic notions for topology I/II, Fuzzy Set Syst. 26 (1988) 171–195, 27 (1988) 333–356.
- I. Kramosil, J. Michalek, Fuzzy metric statistical metric spaces, Kybernetica 11(5) (1975) 336–344.
- N.N. Morsi, On fuzzy pseudo-normed vector spaces, Fuzzy Set Syst. 27 (1988) 351–372.
- H. Adibi, Y. Cho, D. O’regan, R. Saadati, Common fixed point theorems in L-fuzzy metric spaces, Appl. Math. Comput. 182 (2006) 820–828.
- N.F. Al-Mayahi, L.S. Ibrahim, Some properties of two-fuzzy metric spaces, Gen. Math. Notes 17(2) (2013) 41–52.
- G.D. Çayh, On the structure of uninorms on bounded lattices, Fuzzy Set Syst. 357 (2019) 2–26.
- A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Set Syst. 90 (1997) 365–368.
- V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces. V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Set Syst. 115(3) (2000) 485–489.
- X.J. Hua, W. Ji, Uninorms on bounded lattices constructed by t-norms and t-subconorms, Fuzzy Set Syst. [CrossRef]
- M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst. 27(3) (1988) 385–389.
- S. Morillas, V. Gregori, G. Peris-Fajarnés, A. Sapena, New adaptive vector filter using fuzzy metrics, J. Electron. Imag., 16(3) (2007): 033007. [CrossRef]
- S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Set Syst. 127(3) (2002) 345–352.
- F.G. Shi, (L,M)-fuzzy metric spaces, Indian J. Math. 52 (2010) 231–250.
- F.G. Shi, L-metric on the space of L-fuzzy numbers, Fuzzy Set Syst. 399 (15) (2020) 95–109.
- R.R. Yager, Defending against strategic manipulation in uninorm-based multi-agent decision making, Fuzzy Set Syst. 140 (2003) 331–339.
- Y.W. Peng, Simplification of Erceg fuzzy metric function and its application, Fuzzy Set Syst. 54 (1993) 181–189.
- P. Chen, F.G. Shi, A note on Erceg pseudo-metric and pointwise pseudo-metric, J. Math. Res. Exp. 28 (2008) 339–443.
- G. Gierz et al., A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980.
- G.J. Wang, Theory of L-fuzzy Topological Spaces, Shaanxi Normal University Press, Xi’an, 1988.
- F.G. Shi, Pointwise quasi-uniformities and p.q. metrics on completely distributive lattices, Acta Math. Sinica 39 (1996) 701–706.
- F.G. Shi, C.Y. Zheng, Metrization theorems on L-topological spaces, Fuzzy Set Syst. 149 (2005) 455–471.
- Y.Y. Lan, F. Long, The sufficiency and necessity conditions for metrization of the fuzzy topological spaces, J. Hunan City Uinv. 15(2) (2006) 37–39, 65.
- P. Chen, X. Qiu, Expansion theorem of Deng metric, Fuzzy Syst. Math. 33 (2019) 54–65.
- P.M. Pu and Y.M. Liu, Fuzzy topology I. neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- J.L. Kelley, General Topology, Springer, New York, 1975.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
