Submitted:
29 August 2023
Posted:
29 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. PAHs Analysis
2.3. Benzo(a)pyrene Equivalent Estimation
2.4. Ecotoxicity Assessment of Bioluminescent Bacteria
3. Results & Discussion
3.1. PAHs in the Crude oil-Contaminated Soils
3.2. Estimation of Toxic Equivalence Coefficient and Mutation Equivalence Coefficient of PAHs
3.3. Results of Acute Toxicity Assessment Using Bioluminescent Bacteria
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, N.; Dashti, N.; Khanafer, M.; Al-Awadhi, H.; Radwan, S. Bioremediation of Soils Saturated with Spilled Crude Oil. Sci Rep 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Al-Awadi, E.; Quinn, M.; Akber, A.; Al-Senafy, M.; Rashid, T. Ground Water Contamination in Kuwait Resulting from the 1991 Gulf War: A Preliminary Assessment. Ground Water Monit Remediat 2008, 28, 81–93. [Google Scholar] [CrossRef]
- Chibwe, L.; Manzano, C.A.; Muir, D.; Atkinson, B.; Kirk, J.L.; Marvin, C.H.; Wang, X.; Teixeira, C.; Shang, D.; Harner, T.; et al. Deposition and Source Identification of Nitrogen Heterocyclic Polycyclic Aromatic Compounds in Snow, Sediment, and Air Samples from the Athabasca Oil Sands Region. Environ Sci Technol 2019, 53, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Gearhart-Serna, L.M.; Jayasundara, N.; Tacam, M.; Di Giulio, R.; Devi, G.R. Assessing Cancer Risk Associated with Aquatic Polycyclic Aromatic Hydrocarbon Pollution Reveals Dietary Routes of Exposure and Vulnerable Populations. J Environ Public Health 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Olayinka, O.O.; Adewusi, A.A.; Olarenwaju, O.O.; Aladesida, A.A. Concentration of Polycyclic Aromatic Hydrocarbons and Estimated Human Health Risk of Water Samples Around Atlas Cove, Lagos, Nigeria. J Health Pollut 2018, 8. [Google Scholar] [CrossRef]
- Girardin, V.; Grung, M.; Meland, S. Polycyclic Aromatic Hydrocarbons: Bioaccumulation in Dragonfly Nymphs (Anisoptera), and Determination of Alkylated Forms in Sediment for an Improved Environmental Assessment. Sci Rep 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Abarian, M.; Cappello, S. Biodegradation of Aromatic Compounds. In Biodegradation and Bioremediation of Polluted Systems - New Advances and Technologies; Chamy, R., Francisca, R., Eds.; InTech: London, 2015; pp. 109–123. [Google Scholar]
- Misaki, K.; Takamura-Enya, T.; Ogawa, H.; Takamori, K.; Yanagida, M. Tumour-Promoting Activity of Polycyclic Aromatic Hydrocarbons and Their Oxygenated or Nitrated Derivatives. Mutagenesis 2016, 31, 205–213. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms and Challenges. Sustainability (Switzerland) 2021, 13. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. Bioremediation of Petroleum Contamination; 2009; ISBN 9780521470414. [Google Scholar]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Distribution Pattern and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Algoa Bay, South Africa. Environ Geochem Health 2019, 41, 1303–1320. [Google Scholar] [CrossRef]
- Jung, K.H.; Yan, B.; Chillrud, S.N.; Perera, F.P.; Whyatt, R.; Camann, D.; Kinney, P.L.; Miller, R.L. Assessment of Benzo(a)Pyrene-Equivalent Carcinogenicity and Mutagenicity of Residential Indoor versus Outdoor Polycyclic Aromatic Hydrocarbons Exposing Young Children in New York City. Int J Environ Res Public Health 2010, 7, 1889–1900. [Google Scholar] [CrossRef]
- Environmental Protection Agency Method 1664B: N-Hexane Extractable Material and Silica Gel Treated n-Hexane Extractable Material by Extraction and Gravimetry. United States Environmental Protection Agency 2010.
- Nisbet, I.C.T.; LaGoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- HIRSCH, M. AVIS Sur l’évaluation Des Risques Présentés Par Le Benzo(a)Pyrène (B(a)P) et Par d’autres Hydrocarbures Aromatiques Polycycliques (HAP), Présents Dans Diverses Denrées Ou Dans Certaines Huiles Végétales, Ainsi Que Sur Les Niveaux de Concentration En HAP d. Afssa – Saisine n° 2000-SA-0005 2003, 59.
- Durant, J.L.; Busby, W.F.; Lafleur, A.L.; Penman, B.W.; Crespi, C.L. Human Cell Mutagenicity of Oxygenated, Nitrated and Unsubstituted Polycyclic Aromatic Hydrocarbons Associated with Urban Aerosols. Mutation Research - Genetic Toxicology 1996, 371, 123–157. [Google Scholar] [CrossRef] [PubMed]
- Durant, J.L.; Lafleur, A.L.; Busby, W.F.; Donhoffner, L.L.; Penman, B.W.; Crespi, C.L. Mutagenicity of C24H14 PAH in Human Cells Expressing CYP1A1. Mutat Res Genet Toxicol Environ Mutagen 1999, 446, 1–14. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme International Labour Organisation, Inter-Organization Programme for the Sound Management of Chemicals (IOMC), W. H.O. Selected Non-Heterocyclic Polycyclic Aromatic Hydrocarbons - Environmental Health Criteria 202; World Health Organization: Geneva PP - Geneva, 1998. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1988 : Lyon, F. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. Iarc Monographs on the Evaluation of Carcinogenic Risks To Humans; Lyon, 2014; Volume 105. [Google Scholar]
- USEPA Provisional Guidance for Quan1titative Risk Assessment of Polycyclic Aromatic Hydrocarbons. Office of Research and Development 1993, 600, 1–20.
- Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.; Brunström, B.; Cook, P.; Feeley, M.; Giesy, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; et al. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environ Health Perspect 1998, 106, 775–792. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to Polycyclic Aromatic Hydrocarbons with Special Focus on Cancer. Asian Pac J Trop Biomed 2015, 5, 182–189. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egyptian Journal of Petroleum 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Characteristics, M. Encyclopedia of Immunotoxicology. Encyclopedia of Immunotoxicology 2005, 1, 1–7. [Google Scholar] [CrossRef]
- Bolden, A.L.; Rochester, J.R.; Schultz, K.; Kwiatkowski, C.F. Polycyclic Aromatic Hydrocarbons and Female Reproductive Health: A Scoping Review. Reproductive Toxicology 2017, 73, 61–74. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, K.; Huo, X.; Xu, X. Sources, Distribution, and Toxicity of Polycyclic Aromatic Hydrocarbons. J Environ Health 2011, 73, 22–25. [Google Scholar] [PubMed]
- Yu, H. Environmental Carcinogenic Polycyclic Aromatic Hydrocarbons: Photochemistry and Phototoxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2002, 20, 149–183. [Google Scholar] [CrossRef]
- Rajpara, R.K.; Dudhagara, D.R.; Bhatt, J.K.; Gosai, H.B.; Dave, B.P. Polycyclic Aromatic Hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: Occurrence, Source Apportionment, and Toxicity of PAHs as an Emerging Issue. Mar Pollut Bull 2017, 119, 231–238. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, G.A. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia Magna). Bull Environ Contam Toxicol 1980, 24, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Eastmond, D.A.; Booth, G.M.; Lee, M.L. Toxicity, Accumulation, and Elimination of Polycyclic Aromatic Sulfur Heterocycles in Daphnia Magna. Arch Environ Contam Toxicol 1984, 13, 105–111. [Google Scholar] [CrossRef]
- Kagan, J.; Kagan, E.D.; Kagan, I.A.; Kagan, P.A.; Quigley, S. The Phototoxicity of Non-Carcinogenic Polycyclic Aromatic Hydrocarbons in Aquatic Organisms. Chemosphere 1985, 14, 1829–1834. [Google Scholar] [CrossRef]
- Atienzar, F.A.; Conradi, M.; Evenden, A.J.; Jha, A.N.; Depledge, M.H. Qualitative Assessment of Genotoxicity Using Random-Amplified Polymorphic DNA: Comparison of Genomic Template Stability with Key Fitness Parameters in Daphnia Magna Exposed to Benzo[a]Pyrene. Environ Toxicol Chem 1999, 18, 2275–2282. [Google Scholar] [CrossRef]
| Parameters | GC-MS Conditions |
|---|---|
| Injector temperature | 260℃ |
| Detector temperature | 300℃ |
| Flow gas | He |
| Flow rate | 1mL min-1 |
| Injection volume | 1 uL |
| Column | Silica capillary column HP-5MS Ultra Inert (30m x 0.25mm id x 0.25um) |
| PAH compound(Abbreviation) | TEF (Nisbet and LaGoy 1992) [14] |
MEF (Durant et al. 1996, 1999) [16,17] |
|---|---|---|
| Naphthalene(NaP) | 0.001 | - |
| Acenaphthylene(Acy) | 0.001 | - |
| Acenaphthene(Ace) | 0.001 | - |
| Fluorene(Flu) | 0.001 | - |
| Phenanthrene(Phe) | 0.001 | - |
| Anthracene(Ant) | 0.01 | - |
| Fluoranthene(Flr) | 0.001 | - |
| Pyrene(Pyr) | 0.001 | - |
| Benzo(a)anthracene(BaA) | 0.1 | 0.082 |
| Chrysene(Chr) | 0.001 | 0.017 |
| Benzo(b)Fluoranthene(BbF) | 0.1 | 0.25 |
| Benzo(k)fluoranthene(BkF) | 0.01 | 0.11 |
| Benzo(a)pyrene(BaP) | 1.0 | 1.0 |
| Indeno(1,2,3-cd)pyrene(InP) | 0.1 | 0.31 |
| Dibenzo(a,h)anthracene(DahA) | 1.0 | 0.29 |
| Benzo(g,h,i)perylene(BghiP) | 0.01 |
| PAH Compounds | Mean±SD, (ug g-1) | ||
|---|---|---|---|
| Soil A (TPH 5%) | Soil B (TPH 8%) | Soil C (TPH 20%) | |
| Naphthalene | 0.0305±0.0047 | 0.2156±0.0251 | 0.8948±0.1544 |
| Acenaphthylene | 0.0840±0.0014 | 0.1077±0.0067 | 0.1018±0.0214 |
| Acenaphthene | 0.0497±0.0036 | 0.1152±0.0213 | 0.3942±0.0058 |
| Fluorene | 0.2565±0.0179 | 0.6579±0.0136 | 2.3564±0.1300 |
| Phenanthrene | 2.6463±0.0514 | 5.5680±0.4078 | 14.5326±0.8767 |
| Anthracene | 3.0338±0.0589 | 7.5540±0.4675 | 16.6606±1.0051 |
| Fluoranthene | 0.1394±0.0033 | 0.1587±0.0030 | 0.7432±0.0708 |
| Pyrene | 0.3829±0.0557 | 0.4252±0.0700 | 2.1732±0.1266 |
| Benzo(a)anthracene | 0.0757±0.0112 | 0.1057±0.0060 | 0.3839±0.0156 |
| Chrysene | 0.5561±0.0017 | 0.8569±0.0302 | 2.9539±0.1031 |
| Benzo(b)Fluoranthene | 0.0546±0.0020 | 0.1539±0.0186 | 0.0089±0.0015 |
| Benzo(k)fluoranthene | 0.0112±0.0007 | 0.0627±0.0017 | 0.4498±0.0213 |
| Benzo(a)pyrene | 0.0218±0.0031 | 0.2973±0.0362 | 0.4105±0.0317 |
| Indeno(1,2,3-cd)pyrene | 0.0030±0.0005 | 0.0064±0.0005 | 0.0220±0.0023 |
| Dibenzo(a,h)anthracene | 0.0065±0.0004 | 0.0189±0.0024 | 0.0376±0.0052 |
| Benzo(g,h,i)perylene | 0.0136±0.0010 | 0.0665±0.0072 | 0.2013±0.0340 |
| ∑16PAHs | 7.3659 | 16.3708 | 42.3246 |
| PAHs compounds |
TEQ | MEQ | ||||
|---|---|---|---|---|---|---|
| Soil A (TPH 5%) |
Soil B (TPH 8%) |
Soil C (TPH 20%) |
Soil A (TPH 5%) |
Soil B (TPH 8%) |
Soil C (TPH 20%) |
|
| Naphthalene | 0.00003 | 0.00022 | 0.00089 | - | - | - |
| Acenaphthylene | 0.00008 | 0.00011 | 0.00010 | - | - | - |
| Acenaphthene | 0.00005 | 0.00012 | 0.00039 | - | - | - |
| Fluorene | 0.00026 | 0.00066 | 0.00236 | - | - | - |
| Phenanthrene | 0.00265 | 0.00557 | 0.01453 | - | - | - |
| Anthracene | 0.03034 | 0.07554 | 0.16661 | - | - | - |
| Fluoranthene | 0.00014 | 0.00016 | 0.00074 | - | - | - |
| Pyrene | 0.00038 | 0.00043 | 0.00217 | - | - | - |
| Benzo(a)anthracene | 0.00757 | 0.01057 | 0.03839 | 0.00621 | 0.00867 | 0.03148 |
| Chrysene | 0.00056 | 0.00086 | 0.00295 | 0.00945 | 0.01457 | 0.05022 |
| Benzo(b)Fluoranthene | 0.00546 | 0.01539 | 0.00089 | 0.01365 | 0.03849 | 0.00222 |
| Benzo(k)fluoranthene | 0.00011 | 0.00063 | 0.00450 | 0.00123 | 0.00690 | 0.04948 |
| Benzo(a)pyrene | 0.02182 | 0.29733 | 0.41051 | 0.02182 | 0.29733 | 0.41051 |
| Indeno(1,2,3-cd)pyrene | 0.00030 | 0.00064 | 0.00220 | 0.00093 | 0.00200 | 0.00682 |
| Dibenzo(a,h)anthracene | 0.00654 | 0.01890 | 0.03759 | 0.00190 | 0.00548 | 0.01090 |
| Benzo(g,h,i)perylene | 0.00014 | 0.00067 | 0.00201 | - | - | - |
| Total | 0.07642 | 0.42777 | 0.68684 | 0.05519 | 0.37342 | 0.56162 |
| PAHs compounds | DMSO 1% |
Soil A (TPH 5%) |
Soil B (TPH 8%) |
Soil C (TPH 20%) |
|---|---|---|---|---|
| EC50(%) | >100 | 25 | 2.5 | 0.75 |
| ∑16PAHs(ug/g) | - | 7.3659 | 16.3708 | 42.3246 |
| Compound | Cas No. | MW (g mol-1) |
Water Solubility (mg L-1 (25℃)) |
Log Kow | EC50 (mg L-1) |
|---|---|---|---|---|---|
| Naphthalene | 91-20-3 | 128.1 | 31.6 | 3.4 | 0.55 |
| Acenaphthylene | 208-96-8 | 125.1 | 16.0 | 4.0 | 0.24 |
| Acenaphthene | 83-32-9 | 154.2 | 4.5 | 3.9 | 0.45 |
| Fluorene | 86-73-7 | 166.2 | 1.8 | 4.2 | 0.32 |
| Phenanthrene | 85-01-8 | 178.2 | 1.3 | 4.6 | 0.15 |
| Anthracene | 120-12-7 | 178.2 | 0.07 | 4.5 | 0.52 |
| Fluoranthene | 206-44-0 | 202.3 | 0.24 | 5.2 | 0.34 |
| Pyrene | 129-00-0 | 202.3 | 0.14 | 5.2 | 0.27 |
| Benzo(a)anthracene | 56-55-3 | 228.3 | 0.01 | 5.9 | 0.13 |
| Chrysene | 218-01-9 | 228.3 | 0.003 | 5.7 | 0.07 |
| Benzo(b)Fluoranthene | 205-99-2 | 252.3 | < 0.001 | 5.8 | 0.08 |
| Benzo(k)fluoranthene | 207-08-9 | 252.3 | < 0.001 | 6.0 | 0.08 |
| Benzo(a)pyrene | 50-32-8 | 252.3 | < 0.001 | 6.0 | 0.05 |
| Indeno(1,2,3-cd)pyrene | 193-39-5 | 276.3 | < 0.001 | 7.7 | 0.13 |
| Dibenzo(a,h)anthracene | 53-70-3 | 278.4 | < 0.001 | 6.8 | 0.05 |
| Benzo(g,h,i)perylene | 191-24-2 | 276.3 | < 0.001 | 6.5 | 0.08 |
| PAH Compounds | Daphnia magna |
Aliivibrio fischeri (This study) |
Reference |
|---|---|---|---|
| LC50 (mg L-1) | EC50 ( mg L-1) | ||
| Acenaphthene | 41 (48 h) | 0.45 | (LeBlanc 1980) [29] |
| Phenanthrene | 0.843 (48 h) | 0.15 | (Eastmond et al. 1984) [30] |
| Anthracene | 0.02 (1 h) | 0.52 | (Kagan et al. 1985) [31] |
| Flouranthene | 0.004 (1 h) | 0.34 | (Kagan et al. 1985) [31] |
| Pyrene | 0.004 (1 h) | 0.27 | (Kagan et al. 1985) [31] |
| Benzo[a]pyrene | 0.215 (48 h)) | 0.05 | (Atienzar et al. 1999) [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
