Submitted:
26 August 2023
Posted:
29 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Resistance profile
3.3. Genetic diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020. Available online: https://www.who.int/publications/i/item/9789240013131 (accessed on 31 August 2022).
- Gandhi, N.; Moll, A.; Sturm, A.; Pawinski, R.; Govender, T.; Lalloo, U. Extensively drug-resistant tuberculosis as a cause of death in patients coinfected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006, 368, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging microbes & infections. 2020, 9, 1651–1663. [Google Scholar]
- Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E.; Eldeen, H.S.; Joseph, S. Occurrence of disputed rpoB mutations among Mycobacterium tuberculosis isolates phenotypically susceptible to rifampicin in a country with a low incidence of multidrug-resistant tuberculosis. BMC infectious diseases. 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bainomugisa, A.; Lav, E.; Pandey, S.; Majumdar, S.; Banamu, J.; Coulter, C.; Marais, B.; Coin, L.; Graham, S.M.; du Cros, P. Evolution and spread of a highly drug-resistant strain of Mycobacterium tuberculosis in Papua New Guinea. BMC infectious diseases. 2022, 22, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ogari, C.O.; Nyamache, A.K.; Nonoh, J.; Amukoye, E. Prevalence and detection of drug-resistant mutations in Mycobacterium tuberculosis among drug naïve patients in Nairobi, Kenya. BMC infectious diseases. 2019, 19, 1–7. [Google Scholar] [CrossRef]
- Solo, E.S.; Nakajima, C.; Kaile, T.; Bwalya, P.; Mbulo, G.; Fukushima, Y.; Chila, S.; Kapata, N.; Shah, Y.; Suzuki, Y. Mutations in rpoB and katG genes and the inhA operon in multidrug-resistant Mycobacterium tuberculosis isolates from Zambia. Journal of global antimicrobial resistance. 2020, 22, 302–307. [Google Scholar] [CrossRef]
- Valafar, S.J. Systematic review of mutations associated with isoniazid resistance points to continuing evolution and subsequent evasion of molecular detection, and potential for emergence of multidrug resistance in clinical strains of Mycobacterium tuberculosis. Antimicrob Agents and Chem 2021, 65, e02091–20. [Google Scholar] [CrossRef]
- Wan, L.; Liu, H.; Li, M.; Jiang, Y.; Zhao, X.; Liu, Z.; Wan, K.; Li, G.; Guan, C-x. Genomic Analysis Identifies Mutations Concerning Drug-Resistance and Beijing Genotype in Multidrug-Resistant Mycobacterium Tuberculosis Isolated From China. Front. Microbiol. 2020, 11, 1444. [Google Scholar] [CrossRef]
- Libiseller-Egger, J.; Phelan, J.; Campino, S.; Mohareb, F.; Clark, T.G. Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of concurrent resistance markers. PLoS Comput Biol. 2020, 16, e1008518. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, D.; Martinez, L.; Lu, P.; Zhu, L.; Lu, W.; Wang, J. Mycobacterium tuberculosis Beijing genotype strains and unfavorable treatment outcomes: a systematic review and meta-analysis. Clin Microbial Infect. 2020, 26, 180–8. [Google Scholar] [CrossRef]
- Zheng, Y.; Xia, H.; Bao, X.; Zhao, B.; He, P.; Zhao, Y. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium Tuberculosis by Droplet Digital PCR. Infection and Drug Resistance. 2022, 6245–6254. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbial. 2019, 17, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Mokrousov, I.; Ly, H.M.; Otten, T.; Lan, N.N.; Vyshnevskyi, B.; Hoffner, S.; Narvskaya, O. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res. 2005, 15, 1357–1364. [Google Scholar] [CrossRef]
- Karmakar, M.; Trauer, J.M.; Ascher, D.B.; Denholm, J.T. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: systematic review and meta-analysis. J. Infect. 2019, 79, 572–581. [Google Scholar] [CrossRef]
- Pitso, L.; Potgieter, S.; Van der Spoel van Dijk, A. Prevalence of isoniazid resistance-conferring mutations associated with multidrug-resistant tuberculosis in Free State Province, South Africa. South African Medical Journal. 2019, 109, 659–664. [Google Scholar] [CrossRef]
- Lempens, P.; Meehan, C.J.; Vandelannoote, K.; Fissette, K.; de Rijk, P.; Van Deun, A.; Rigouts, L.; de Jong, B.C. High-confidence resistance-conferring mutations can largely predict isoniazid resistance levels of Mycobacterium tuberculosis. Scientific reports. 2018, 8, 3246. [Google Scholar] [CrossRef]
- Hain Lifescience. 2016. Available online: http://www.hain-lifescience.de/en/company/history.html. (accessed on 11 February 2021).
- Couvin, D.; David, A.; Zozio, T.; Rastogi, N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infection, Genetics and Evolution. 2019, 72, 31–43. [Google Scholar] [CrossRef]
- WHO. Global tuberculosis report. 2018. Available online: https://www.who.int/tb/publi cations/global_report/en/ (accessed on 1 September 2022).
- Moyo, S.; Ismail, F.; Van der Walt, M.; Ismail, N.; Mkhondo, N.; Dlamini, S.; Mthiyane, T.; Chikovore, J.; Oladimeji, O.; Mametja, D.; Maribe, P.; Seocharan, I.; Ximiya, *!!! REPLACE !!!*; P., *!!! REPLACE !!!*; Law, I.; Tadolini, M.; Zuma, K.; Manda, S.; Sismanidis, C.; Pillay, Y.; Mvusi, L. Prevalence of bacteriologically confirmed pulmonary tuberculosis in South Africa, 2017–2019: a multistage, cluster-based, cross-sectional survey. Lancet Infect Dis Erratum in: Lancet Infect Dis. 2022, 22, e177. 2022, 22, 1172–1180. [Google Scholar] [CrossRef]
- Miller, P.B.; Zalwango, S.; Galiwango, R.; Kakaire, R.; Sekandi, J.; Steinbaum, L.; Drake, J.M.; Whalen, C.C.; Kiwanuka, N. Association between tuberculosis in men and social network structure in Kampala, Uganda. BMC Infectious Diseases. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Horton, K.C.; MacPherson, P.; Houben, R.M.G.J.; White, R.G.; Corbett, E.L. Sex differences in tuberculosis burden and notifications in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med. 2016, 13, e1002119. [Google Scholar] [CrossRef]
- Horton, K.C.; Hoey, A.L.; Béraud, G.; Corbett, E.L.; White, R.G. Systematic review and meta-analysis of sex differences in social contact patterns and implications for tuberculosis transmission and control. Emerg Infect Dis. 2020, 26, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.; Halse, T.A.; Kohlerschmidt, D.; Lapierre, P.; Modestil, H.A.; Kearns, C.H.; Dworkin, F.F.; Rakeman, J.L.; Escuyer, V.; Musser, K.A. Low-level rifampin resistance and rpoB mutations in Mycobacterium tuberculosis: an analysis of whole-genome sequencing and drug susceptibility test data in New York. Journal of Clinical Microbiology 2021, 59, e01885–20. [Google Scholar] [CrossRef]
- Getahun, M.; Blumberg, H.M.; Ameni, G.; Beyene, D.; Kempker, R.R. Minimum inhibitory concentrations of rifampin and isoniazid among multidrug and isoniazid-resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE 2022, 17, e0274426. [Google Scholar] [CrossRef]
- Niehaus, A.J.; Mlisana, K.; Gandhi, N.R.; Mathema, B.; Brust, J.C.M. High Prevalence of inhA Promoter Mutations among Patients with Drug Resistant Tuberculosis in KwaZulu-Natal, South Africa, 2015.
- Lavu, E.K.; Johnson, K.; Banamu, J.; Pandey, S.; Carter, R.; Coulter, C.; Aia, P.; Majumdar, S.S.; Marais, B.J.; Graham, S.M.; Vince, J. Drug-resistant tuberculosis diagnosis since Xpert® MTB/RIF introduction in Papua New Guinea, 2012–2017. Public Health Action. 2019, 9, S12–S18. [Google Scholar] [CrossRef]
- Uddin, M.K.M.; Rahman, A.; Ather, M.F.; Ahmed, T.; Rahman, S.M.M.; Ahmed, S.; Banu, S. Distribution and Frequency of rpoB Mutations Detected by Xpert MTB/RIF Assay Among Beijing and Non-Beijing Rifampicin Resistant Mycobacterium tuberculosis Isolates in Bangladesh. IDR 2020, 13, 789–797. [Google Scholar] [CrossRef]
- Jia, H.; Xu, Y.; Sun, Z. Analysis on Drug-Resistance-Associated Mutations among Multidrug-Resistant Mycobacterium tuberculosis Isolates in China. Antibiotics. 2021, 10, 1367. [Google Scholar] [CrossRef]
- Evans, J.; Stead, M.C.; Nicol, M.P.; Segal, H. Rapid genotypic assays to identify drug-resistant Mycobacterium tuberculosis in South Africa. J. Antimicrob. Chemother. 2009, 63, 11–16. [Google Scholar] [CrossRef]
- Kozhamkulov, U.; Akhmetova, A.; Rakhimova, S.; Belova, E.; Alenova, A.; Bismilda, V. Molecular characterization of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan. Jpn J Infect Dis 2011, 64, 253–255. [Google Scholar] [CrossRef]
- Lipin, M.; Stepanshina, V.N.; Shemyakin, I.G. Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect. 2007, 13, 620–626. [Google Scholar] [CrossRef]
- Folkvardsen, D.B.; Thomsen, V.Ø.; Rigouts, L. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol. 2013, 51, 4220–4222. [Google Scholar] [CrossRef]
- Ley, S.D.; de Vos, M.; Van Rie, A.; Warren, R.M. Deciphering within-host Microevolution of Mycobacterium tuberculosis through Whole-genome sequencing: the phenotypic impact and way forward. Microbiol Mol Biol Rev. 2019, 83, e00062–e000618. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.R.; Barnard, M.; Kleinman, M.B.; Streicher, E.M.; Ragan, E.J.; White, L.F.; Shapira, O.; Dolby, T.; Simpson, J.; Scott, L.; Stevens, W. Implications of failure to routinely diagnose resistance to second-line drugs in patients with rifampicin-resistant tuberculosis on Xpert MTB/RIF: a multisite observational study. Clinical Infectious Diseases. 2017, 64, 1502–1508. [Google Scholar] [CrossRef]
- McIvor, A.; Koornhof, H.; Kana, B.D. Relapse, re-infection, and mixed infections in tuberculosis disease. Pathogens and Disease. 2017, 75, ftx020. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, J.; Lu, H.; Zhang, X.; Wang, C.; Liu, H.; Zhang, X.; Li, J.; Cao, J.; Zhou, T. Deciphering colistin heteroresistance in Acinetobacter baumannii clinical isolates from Wenzhou, China. The Journal of Antibiotics. 2020, 73, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Modongo, C.; Baik, Y.; Allender, C.; Lemmer, D.; Colman, R.E. Mixed Mycobacterium tuberculosis-strain infections are associated with poor treatment outcomes among patients with newly diagnosed tuberculosis, independent of pretreatment heteroresistance. J Infect Dis 2018, 218, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. et al. Association between genotype and drug resistance profiles of Mycobacterium tuberculosis strains circulating in China in a national drug resistance survey. PLoS ONE 2017, 12, e0174197. [CrossRef] [PubMed]
- Liu, Q.; Wang, D.; Martinez, L.; Lu, P.; Zhu, L.; Lu, W.; Wang, J. Mycobacterium tuberculosis Beijing genotype strains and unfavorable treatment outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2020, 26, 180–8. [Google Scholar] [CrossRef]
- Faye, L.M.; Hosu, M.C.; Oostvogels, S.; Dippenaar, A.; Warren, R.M.; Sineke, N.; Vasaikar, S.; Apalata, T. The Detection of Mutations and Genotyping of Drug-Resistant Mycobacterium tuberculosis Strains Isolated from Patients in the Rural Eastern Cape Province. Infect. Dis. Rep. 2023, 15, 403–416. [Google Scholar] [CrossRef]
- Parwati, I.; van Crevel, R.; van Soolingen, D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis. 2010, 10, 103–111. [Google Scholar] [CrossRef]
- Liu, Y. Genotypic diversity analysis of Mycobacterium tuberculosis strains collected from Beijing in 2009, using spoligotyping and VNTR typing. PLoS ONE 2014, 9, e106787. [Google Scholar] [CrossRef]
- Said, H.; Ratabane, J.; Erasmus, L.; Gardee, Y.; Omar, S.; Dreyer, A.; Ismail, F.; Bhyat, Z.; Lebaka, T.; van der Meulen, M.; Gwala, T. Distribution and Clonality of drug-resistant tuberculosis in South Africa. BMC Microbiol. 2021, 21, 157. [Google Scholar] [CrossRef] [PubMed]
- Maguga-Phasha, N.T.; Munyai, N.S.; Mashinya, F. , Makgatho, M.E., Mbajiorgu, E.F. Genetic diversity and distribution of Mycobacterium tuberculosis genotypes in Limpopo, South Africa. BMC Infect. Dis. 2017, 17, 764. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.N.; Shah, N.S.; Mathema, B.; Ismail, N.; Brust, J.C.; Brown, T.S.; Auld, S.C.; Omar, S.V.; Morris, N.; Campbell, A.; Allana, S. Spatial patterns of extensively drug-resistant tuberculosis transmission in KwaZulu-Natal, South Africa. J. Infect. Dis. 2018, 218, 1964–1973. [Google Scholar] [CrossRef] [PubMed]
| Patient characteristics | Total (n) | MDR-TB (n) | HR-TB (n) |
|---|---|---|---|
| Sex | |||
| Male | 244 | 231 | 13 |
| Female | 168 | 163 | 5 |
| Age category, years | |||
| ≤25 | 103 | 100 | 3 |
| 26–45 | 207 | 194 | 13 |
| 46 – 60 | 63 | 62 | 1 |
| ≥ 61 | 40 | 38 | 2 |
| rpoB | KatG | inhA | |||
|---|---|---|---|---|---|
| Region of mutation | Number of isolates | Region of mutation |
Number of isolates | Region of mutation |
Number of isolates |
| D516V | 124 | S315Tb | 338 | c-15tb | 40 |
| S531L | 216 | Missing | 74 | t-8c | 4 |
| H526Y | 3 | t-8a | 2 | ||
| H526D | 3 | Missing | 366 | ||
| H526D & S531L | 2 | ||||
| D516V & S531L | 1 | ||||
| Missing | 64 | ||||
| LPA score of HR isolates | Region of HR | Variant |
|---|---|---|
| rpoB WT-MUT/katG MUT/inhA WT | rpoB D516V | LAM |
| rpoB WT/ katG WT/ inhA WT-MUT | inhA c-15tb | T |
| rpoB WT- MUT/ katG WT/ inhA WT- MUT | rpoB H526Y and inhA c-15tb | T |
| rpoB MUT/ katG WT- MUT/ inhA WT | katG S315Tb | X |
| rpoB MUT/ katG MUT/ inhA WT-MUT | inhA c-15tb | LAM |
| rpoB WT-MUT/ katG MUT/ inhA MUT | rpoB H526D | LAM |
| rpoB WT/katG WT/inhA WT-MUT | inhA c-15tb | Beijing |
| rpoB MUT/katG WT/inhA WT-MUT | inhA c-15tb | Beijing |
| rpoB WT/ katG WT/ inhA WT-MUT | inhA c-15tb | X |
| rpoB WT-MUT/ katG MUT/ inhA WT-MUT | rpoB S531L inhA c-15tb | X |
| rpoB WT-MUT/ katG WT-MUT/ inhA MUT | rpoB S531L katG S315Tb | T |
| rpoB MUT/ katG WT-MUT/ inhA WT | katG S315Tb | Beijing |
| rpoB MUT/ katG WT/ inhA WT-MUT | inhA c-15tb | Beijing |
| rpoB MUT/ katG WT- MUT/ inhA WT | katG S315Tb | LAM |
| rpoB MUT/ katG WT-MUT/ inhA WT-MUT | katG S315Tb and inhA c-15tb | T |
| rpoB WT/ katG WT/ inhA WT-MUT | inhA c-15tb | X |
| rpoB WT/katG WT-MUT/inhA WT | katG S315Tb | LAM |
| rpoB MUT/ katG WT-MUT/ inhA WT-MUT | katG S315Tb and inhA c-15tb | Beijing |
| Variant | Number of isolates n (%) |
|---|---|
| Beijing | 184 (44,6%) |
| LAM | 82 (19,9%) |
| X | 48 (11,7%) |
| T | 34 (8,3%) |
| S | 31 (7,5%) |
| EAI | 16 (3.9%) |
| H | 6 (1.5%) |
| CAS UNKNOWN |
5 (1.2%) 6 (1,5%) |
| rpoB mutation region | Beijing (n= 184) |
LAM (n = 82) |
Other (n =140) |
Unknown (n=6) |
|---|---|---|---|---|
| D516V | 60 | 21 | 42 | 1 |
| S531L | 105 | 40 | 66 | 5 |
| H526Y | 1 | 1 | 1 | 0 |
| H526D | 2 | 1 | 0 | 0 |
| H526D & S531L | 1 | 0 | 1 | 0 |
| D516V & S531L | 0 | 0 | 1 | 0 |
| Missing mutation | 15 | 19 | 30 | 0 |
| katGmutation region |
Beijing (n = 184) |
LAM (n = 82) |
Other (n =140) |
Unknown (n = 6) |
| S315Tb | 152 | 65 | 115 | 6 |
| Missing | 32 | 17 | 25 | 0 |
| inhAmutation region |
Beijing (n = 184) |
LAM (n = 82) |
Other (n = 140) |
Unknown (n = 6) |
| c-15tb | 20 | 4 | 16 | 0 |
| t-8c | 1 | 3 | 0 | 0 |
| t-8a | 1 | 1 | 0 | 0 |
| Missing | 162 | 74 | 124 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
