Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers2023, 15, 3611.
Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers 2023, 15, 3611.
Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers2023, 15, 3611.
Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers 2023, 15, 3611.
Abstract
The need to recycle carbon fibre reinforced composite polymers (CFRP) has grown significantly to reduce the environmental impact generated by their production. To meet this need, thermoreversible epoxy matrices have been developed in recent years. This study investigates the performance of an epoxy vitrimer made by introducing a metal catalyst (Zn2+) and its carbon fibre composites focusing on the healing capability of the system. The dynamic crosslinking networks endow vitrimers with interesting rheological behaviour, the capability of the formulated resin (AV-5) has been assessed by creep tests. The analysis showed increased molecular mobility above a topology freezing temperature (Tv). However, the reinforcement phase inhibits the flow capability reducing the flow. The fracture behaviour of CFRP made with the vitrimeric resin has been investigated by Mode I and Mode II tests and compared with the conventional system. The repairability of the vitrimeric CFRP has been investigated by attempting to recover the delaminated samples, which yielded unsatisfactory results. Moreover, the healing efficiency of the modified epoxy composites has been assessed by using the vitrimer as an adhesive layer. The joints were able to recover about 84% of the lap shear strength of the pristine system.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.