Submitted:
17 July 2023
Posted:
18 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Exploring gene functions and creating desired germplasms
3. Ushering in a new era of crop de novo domestication
4. Breaking breeding bottlenecks of tradeoff effects
5. Accelerating conventional production of crop hybrid seed
6. Promoting hybrid rice asexual reproduction
7. Facilitating double haploid breeding technology
8. Conclusions
Acknowledgments
References
- Acevedo-Garcia J, Spencer D, Thieron H, Reinstadler A, Hammond-Kosack K, Phillips AL, Panstruga R (2017) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15 (3):367-378. [CrossRef]
- Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV (2023) Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta 257 (4):78. [CrossRef]
- Ahmad M (2023) Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security. Front Plant Sci 14:1133036. [CrossRef]
- Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cardenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN, Jr. (2016) Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 28 (7):1510-1520. [CrossRef]
- Antony G, Zhou JH, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3. Plant Cell 22 (11):3864-3876. [CrossRef]
- Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S (2022) Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 60:108006. [CrossRef]
- Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, Wang W, Jiao G, Tang S, Wei X, Hu P (2019) Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol 19 (1):109. [CrossRef]
- Basu U, Parida SK (2021) Restructuring plant types for developing tailor-made crops. Plant Biotechnol J. [CrossRef]
- Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132 (6):1235-1245. [CrossRef]
- Bommert P, Nagasawa NS, Jackson D (2013) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45 (3):334-337. [CrossRef]
- Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P (2023) A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. New Phytol 238 (3):1182-1197. [CrossRef]
- Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468 (7323):527-532. [CrossRef]
- Chen WK, Chen L, Zhang X, Yang N, Guo JH, Wang M, Ji SH, Zhao XY, Yin PF, Cai LC, Xu J, Zhang LL, Han YJ, Xiao YN, Xu G, Wang YB, Wang SH, Wu S, Yang F, Jackson D, Cheng JK, Chen SH, Sun CQ, Qin F, Tian F, Fernie AR, Li JS, Yan JB, Yang XH (2022a) Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375 (6587):1372-+ARTNeabg7985. [CrossRef]
- Chen Y, Shahid MQ, Wu J, Deng R, Chen Z, Wang L, Liu G, Zhou H, Liu X (2022b) Thermo-Sensitive Genic Male Sterile Lines of Neo-Tetraploid Rice Developed through Gene Editing Technology Revealed High Levels of Hybrid Vigor. Plants (Basel) 11 (11). [CrossRef]
- Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z (2022c) A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J 20 (5):920-933. [CrossRef]
- Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, Zhang H, Diao X, Guo Y, Li X, Wu C, Sui Y (2021) Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19 (6):1089-1091. [CrossRef]
- Dong L, Li L, Liu C, Liu C, Geng S, Li X, Huang C, Mao L, Chen S, Xie C (2018) Genome Editing and Double-Fluorescence Proteins Enable Robust Maternal Haploid Induction and Identification in Maize. Mol Plant 11 (9):1214-1217. [CrossRef]
- Dong L, Qi X, Zhu J, Liu C, Zhang X, Cheng B, Mao L, Xie C (2019) Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J 17 (10):1853-1855. [CrossRef]
- Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: Constraints and opportunities in plant breeding. Biotechnol Adv 33 (6 Pt 1):812-829. [CrossRef]
- Dwivedi SL, Reynolds MP, Ortiz R (2021) Mitigating tradeoffs in plant breeding. Iscience 24 (9) ARTN102965. [CrossRef]
- Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y (2022) Developments and prospects for doubled haploid wheat. Biotechnol Adv 60:108007. [CrossRef]
- Fang X, Sun X, Yang X, Li Q, Lin C, Xu J, Gong W, Wang Y, Liu L, Zhao L, Liu B, Qin J, Zhang M, Zhang C, Kong F, Li M (2021a) MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Sci China Life Sci 64 (9):1533-1545. [CrossRef]
- Fang Y, Yang J, Guo X, Qin Y, Zhou H, Liao S, Liu F, Qin B, Zhuang C, Li R (2022) CRISPR/Cas9-Induced Mutagenesis of TMS5 Confers Thermosensitive Genic Male Sterility by Influencing Protein Expression in Rice (Oryza sativa L.). Int J Mol Sci 23 (15). [CrossRef]
- Fang Z, Wu B, Ji Y (2021b) The Amino Acid Transporter OsAAP4 Contributes to Rice Tillering and Grain Yield by Regulating Neutral Amino Acid Allocation through Two Splicing Variants. Rice (N Y) 14 (1):2. [CrossRef]
- Fernie AR, Yan J (2019) De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol Plant 12 (5):615-631. [CrossRef]
- Gaillochet C, Pena Fernandez A, Goossens V, D'Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, De Saeger J, Develtere W, Audenaert D, De Vleesschauwer D, Meulewaeter F, Jacobs TB (2023) Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol 24 (1):6. [CrossRef]
- Gao CX (2021) Genome engineering for crop improvement and future agriculture. Cell 184 (6):1621-1635. [CrossRef]
- Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C, Wang L, Young JK, Beatty M, Dahlke B, Hazebroek J, Greene TW, Cigan AM, Chilcoat ND, Meeley RB (2020) Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol 38 (5):579-581. [CrossRef]
- Gasparini K, Moreira JD, Peres LEP, Zsogon A (2021) De novo domestication of wild species to create crops with increased resilience and nutritional value. Curr Opin Plant Biol 60 ARTN102006. [CrossRef]
- Gupta A, Liu B, Chen QJ, Yang B (2023) High-efficiency prime editing enables new strategies for broad-spectrum resistance to bacterial blight of rice. Plant Biotechnol J. [CrossRef]
- Han Y, Zhou SD, Fan JJ, Zhou L, Shi QS, Zhang YF, Liu XL, Chen X, Zhu J, Yang ZN (2021) OsMS188 Is a Key Regulator of Tapetum Development and Sporopollenin Synthesis in Rice. Rice (N Y) 14 (1):4. [CrossRef]
- Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, Zhao D, Fan X, Zhang C, Li Q, Liu Q (2021) Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. Plant Mol Biol 106 (4-5):419-432. [CrossRef]
- Huang XH, Huang SW, Han B, Li JY (2022) The integrated genomics of crop domestication and breeding. Cell 185 (15):2828-2839. [CrossRef]
- Hui S, Li H, Mawia AM, Zhou L, Cai J, Ahmad S, Lai C, Wang J, Jiao G, Xie L, Shao G, Sheng Z, Tang S, Wang J, Wei X, Hu S, Hu P (2022) Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnol J 20 (1):59-74. [CrossRef]
- Il Je B, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu QY, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jonsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48 (7):785-+. [CrossRef]
- Jacquier NMA, Gilles LM, Pyott DE, Martinant JP, Rogowsky PM, Widiez T (2020) Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat Plants 6 (6):610-619. [CrossRef]
- Jia M, Luo N, Meng X, Song X, Jing Y, Kou L, Liu G, Huang X, Wang Y, Li J, Wang B, Yu H (2022a) OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice. J Genet Genomics 49 (8):766-775. [CrossRef]
- Jia MR, Meng XB, Song XG, Zhang DH, Kou LQ, Zhang JH, Jing YH, Liu GF, Liu HH, Huang XH, Wang YC, Yu H, Li JY (2022b) Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice. Cell Discov 8 (1) ARTN71. [CrossRef]
- Jian LM, Yan JB, Liu J (2022) De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology 63 (11):1592-1606. [CrossRef]
- Jiang C, Sun J, Li R, Yan S, Chen W, Guo L, Qin G, Wang P, Luo C, Huang W, Zhang Q, Fernie AR, Jackson D, Li X, Yan J (2022) A reactive oxygen species burst causes haploid induction in maize. Mol Plant 15 (6):943-955. [CrossRef]
- Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42 (6):541-U536. [CrossRef]
- Kelliher T, Starr D, Su XJ, Tang GZ, Chen ZY, Carter J, Wittich PE, Dong SJ, Green J, Burch E, McCuiston J, Gu WN, Sun YJ, Strebe T, Roberts J, Bate NJ, Que QD (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37 (3):287-+. [CrossRef]
- Khan MSS, Basnet R, Ahmed S, Bao J, Shu Q (2020) Mutations of OsPLDa1 Increase Lysophospholipid Content and Enhance Cooking and Eating Quality in Rice. Plants (Basel) 9 (3). [CrossRef]
- Khan MZ, Zaidi SSEA, Amin I, Mansoor S (2019) A CRISPR Way for Fast-Forward Crop Domestication. Trends Plant Sci 24 (4):293-296. [CrossRef]
- Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565 (7737):91-+. [CrossRef]
- Kong D, Wang B, Wang H (2020) UPA2 and ZmRAVL1: Promising targets of genetic improvement of maize plant architecture. J Integr Plant Biol 62 (4):394-397. [CrossRef]
- Kong K, Xu M, Xu Z, Lv W, Lv P, Begum N, Liu B, Liu B, Zhao T (2023) Dysfunction of GmVPS8a causes compact plant architecture in soybean. Plant Sci 331:111677. [CrossRef]
- Koonin EV, Gootenberg JS, Abudayyeh OO (2023) Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry. [CrossRef]
- Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K (2022) From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. Plant and Cell Physiology 63 (11):1607-1623. [CrossRef]
- Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4 (10):766-770. [CrossRef]
- Li C, Gong C, Wu J, Yang L, Zhou L, Wu B, Gao L, Ling F, You A, Li C, Lin Y (2022a) Improvement of Rice Agronomic Traits by Editing Type-B Response Regulators. Int J Mol Sci 23 (22). [CrossRef]
- Li C, Zhou L, Wu B, Li S, Zha W, Li W, Zhou Z, Yang L, Shi L, Lin Y, You A (2022b) Improvement of Bacterial Blight Resistance in Two Conventionally Cultivated Rice Varieties by Editing the Noncoding Region. Cells 11 (16). [CrossRef]
- Li H, You C, Yoshikawa M, Yang X, Gu H, Li C, Cui J, Chen X, Ye N, Zhang J, Wang G (2022c) A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res 32 (10):931-945. [CrossRef]
- Li H, Zhou R, Liu P, Yang M, Xin D, Liu C, Zhang Z, Wu X, Chen Q, Zhao Y (2023) Design of high-monounsaturated fatty acid soybean seed oil using GmPDCTs knockout via a CRISPR-Cas9 system. Plant Biotechnol J. [CrossRef]
- Li J, Wang Z, He G, Ma L, Deng XW (2020) CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics 47 (5):263-272. [CrossRef]
- Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z (2016) Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9. J Genet Genomics 43 (6):415-419. [CrossRef]
- Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61 (12):1201-1205. [CrossRef]
- Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30 (5):390-392. [CrossRef]
- Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36 (12):1160-+. [CrossRef]
- Li Y, Li D, Xiao Q, Wang H, Wen J, Tu J, Shen J, Fu T, Yi B (2022d) An in planta haploid induction system in Brassica napus. J Integr Plant Biol 64 (6):1140-1144. [CrossRef]
- Li Y, Lin Z, Yue Y, Zhao H, Fei X, E L, Liu C, Chen S, Lai J, Song W (2021) Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants 7 (12):1579-1588. [CrossRef]
- Liu C, He Z, Zhang Y, Hu F, Li M, Liu Q, Huang Y, Wang J, Zhang W, Wang C, Wang K (2023a) Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun 4 (2):100470. [CrossRef]
- Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D, Wang Y, Li M, Xin M, Liu W, Jin W, Chen S (2020a) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18 (2):316-318. [CrossRef]
- Liu D, Yang H, Zhang Z, Chen Q, Guo W, Rossi V, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y (2023b) An elite gamma-gliadin allele improves end-use quality in wheat. New Phytol. [CrossRef]
- Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020b) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71 (4):1337-1349. [CrossRef]
- Liu J, Liang D, Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Zhou H, Kelliher T, Zhang X, Bandyopadhyay A (2021a) Rice Haploid Inducer Development by Genome Editing. Methods Mol Biol 2238:221-230. [CrossRef]
- Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D (2021b) Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants 7 (3):287-294. [CrossRef]
- Liu MM, Shi ZY, Zhang XH, Wang MX, Zhang L, Zheng KZ, Liu JY, Hu XM, Di CR, Qian Q, He ZH, Yang DL (2019) Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5 (4):389-400. [CrossRef]
- Liu T, Ji J, Cheng Y, Zhang S, Wang Z, Duan K, Wang Y (2023c) CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean. J Integr Plant Biol. [CrossRef]
- Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inze D (2023) BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell 35 (1):218-238. [CrossRef]
- Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, Huang W, Fang Z (2018) Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J 16 (10):1710-1722. [CrossRef]
- Lu ZF, Yu H, Xiong GS, Wang J, Jiao YQ, Liu GF, Jing YH, Meng XB, Hu XM, Qian Q, Fu XD, Wang YH, Li JY (2013) Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture. Plant Cell 25 (10):3743-3759. [CrossRef]
- Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R, Lu T, Que Q, Wang WC, Zhang X, Kelliher T (2020) Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38 (12):1397-1401. [CrossRef]
- Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42 (6):545-U102. [CrossRef]
- Nadeem M, Chen A, Hong H, Li D, Li J, Zhao D, Wang W, Wang X, Qiu L (2021) GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). J Integr Plant Biol 63 (6):1054-1064. [CrossRef]
- Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nature reviews Genetics 19 (1):21-33. [CrossRef]
- Ni E, Deng L, Chen H, Lin J, Ruan J, Liu Z, Zhuang C, Zhou H (2021) OsCER1 regulates humidity-sensitive genic male sterility through very-long-chain (VLC) alkane metabolism of tryphine in rice. Funct Plant Biol 48 (5):461-468. [CrossRef]
- Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitford R (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17 (10):1905-1913. [CrossRef]
- Okita TW, Delseny M (2023) Genome editing in plants: New advances and applications in plant biology and agriculture. Plant Sci 328:111577. [CrossRef]
- Pak H, Wang H, Kim Y, Song U, Tu M, Wu D, Jiang L (2021) Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.). Plant Biotechnol J 19 (2):365-374. [CrossRef]
- Qi X, Gao H, Lv R, Mao W, Zhu J, Liu C, Mao L, Li X, Xie C (2022) CRISPR/dCas-mediated gene activation toolkit development and its application for parthenogenesis induction in maize. Plant Commun:100449. [CrossRef]
- Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S (2021) Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exp Bot 72 (18):6123-6139. [CrossRef]
- Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB (2019) Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 51 (5):786-+. [CrossRef]
- Saeed S, Usman B, Shim SH, Khan SU, Nizamuddin S, Saeed S, Shoaib Y, Jeon JS, Jung KH (2022) CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement. Plant Sci 324 ARTN111435. [CrossRef]
- Shen K, Qu M, Zhao P (2023) The Roads to Haploid Embryogenesis. Plants (Basel) 12 (2). [CrossRef]
- Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97 (4-5):371-383. [CrossRef]
- Song S, Wang T, Li Y, Hu J, Kan R, Qiu M, Deng Y, Liu P, Zhang L, Dong H, Li C, Yu D, Li X, Yuan D, Yuan L, Li L (2021) A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. Plant Biotechnol J 19 (2):251-260. [CrossRef]
- Song X, Chen Z, Du X, Li B, Fei Y, Tao Y, Wang F, Xu Y, Li W, Wang J, Liang G, Zhou Y, Tan X, Li Y, Yang J (2023) Generation of new rice germplasms with low amylose content by CRISPR/CAS9-targeted mutagenesis of the FLOURY ENDOSPERM 2 gene. Front Plant Sci 14:1138523. [CrossRef]
- Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H (2022) Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol. [CrossRef]
- Song XG, Lu ZF, Yu H, Shao GN, Xiong JS, Meng XB, Jing YH, Liu GF, Xiong GS, Duan JB, Yao XF, Liu CM, Li HQ, Wang YH, Li JY (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27 (9):1128-1141. [CrossRef]
- Sun G, Geng S, Zhang H, Jia M, Wang Z, Deng Z, Tao S, Liao R, Wang F, Kong X, Fu M, Liu S, Li A, Mao L (2022) Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. New Phytol 233 (6):2405-2414. [CrossRef]
- Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Gene Dev 15 (20):2755-2766. [CrossRef]
- Takatsuji H (2017) Regulating Tradeoffs to Improve Rice Production. Front Plant Sci 8:171. [CrossRef]
- Tan W, Miao J, Xu B, Zhou C, Wang Y, Gu X, Liang S, Wang B, Chen C, Zhu J, Zuo S, Yang Z, Gong Z, You A, Wu S, Liang G, Zhou Y (2023) Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7. Plant Biotechnol J. [CrossRef]
- Tang H, Wang K, Zhang S, Han Z, Chang Y, Qiu Y, Yu M, Du L, Ye X (2023) A fast technique for visual screening of wheat haploids generated from TaMTL-edited mutants carrying anthocyanin markers. Plant Commun:100569. [CrossRef]
- Tao Y, Wang J, Miao J, Chen J, Wu S, Zhu J, Zhang D, Gu H, Cui H, Shi S, Xu M, Yao Y, Gong Z, Yang Z, Gu M, Zhou Y, Liang G (2018) The Spermine Synthase OsSPMS1 Regulates Seed Germination, Grain Size, and Yield. Plant Physiol 178 (4):1522-1536. [CrossRef]
- Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365 (6454):658-664. [CrossRef]
- Tian Y, Zhou Y, Gao G, Zhang Q, Li Y, Lou G, He Y (2023) Creation of Two-Line Fragrant Glutinous Hybrid Rice by Editing the Wx and OsBADH2 Genes via the CRISPR/Cas9 System. Int J Mol Sci 24 (1). [CrossRef]
- Vernet A, Meynard D, Lian Q, Mieulet D, Gibert O, Bissah M, Rivallan R, Autran D, Leblanc O, Meunier AC, Frouin J, Taillebois J, Shankle K, Khanday I, Mercier R, Sundaresan V, Guiderdoni E (2022) High-frequency synthetic apomixis in hybrid rice. Nat Commun 13 (1):7963. [CrossRef]
- Waltz E (2022) GABA-enriched tomato is first CRISPR-edited food to enter market. Nat Biotechnol 40 (1):9-11. [CrossRef]
- Wang B, Fang R, Chen F, Han J, Liu YG, Chen L, Zhu Q (2020) A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice. J Integr Plant Biol 62 (10):1594-1606. [CrossRef]
- Wang BB, Zhu L, Zhao BB, Zhao YP, Xie YR, Zheng ZG, Li YY, Sun J, Wang HY (2019a) Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Molecular Plant 12 (4):597-602. [CrossRef]
- Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K (2019b) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37 (3):283-286. [CrossRef]
- Wang D, Zhong Y, Feng B, Qi X, Yan T, Liu J, Guo S, Wang Y, Liu Z, Cheng D, Zhang Y, Shi Y, Zhang S, Pan R, Liu C, Chen S (2023a) The RUBY reporter enables efficient haploid identification in maize and tomato. Plant Biotechnol J. [CrossRef]
- Wang J, Long XY, Chern M, Chen XW (2021a) Understanding the molecular mechanisms of trade-offs between plant growth and immunity. Sci China Life Sci 64 (2):234-241. [CrossRef]
- Wang J, Yu H, Xiong GS, Lu ZF, Jiao YQ, Meng XB, Liu GF, Chen XW, Wang YH, Li JY (2017) Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice. Plant Cell 29 (4):697-707. [CrossRef]
- Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin JJ, Zhu XB, Li Y, Li WT, Liu JL, Wang JC, Chen XQ, Qing H, Wang YP, Liu GF, Wang WM, Li P, Wu XJ, Zhu LH, Zhou JM, Ronald PC, Li SG, Li JY, Chen XW (2018) A single transcription factor promotes both yield and immunity in rice. Science 361 (6406):1026-1028. [CrossRef]
- Wang JY, Doudna JA (2023) CRISPR technology: A decade of genome editing is only the beginning. Science 379 (6629):eadd8643. [CrossRef]
- Wang K (2020) Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1 (1):15-20. [CrossRef]
- Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du L, Ishida Y, Ye X (2022a) The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8 (2):110-117. [CrossRef]
- Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W (2023b) Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat Plants 9 (2):255-270. [CrossRef]
- Wang N, Xia X, Jiang T, Li L, Zhang P, Niu L, Cheng H, Wang K, Lin H (2022b) In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol J 20 (1):22-24. [CrossRef]
- Wang Y, Liu X, Zheng X, Wang W, Yin X, Liu H, Ma C, Niu X, Zhu JK, Wang F (2021b) Creation of aromatic maize by CRISPR/Cas. J Integr Plant Biol 63 (9):1664-1670. [CrossRef]
- Wang Y, Tang Q, Pu L, Zhang H, Li X (2022c) CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. Front Plant Sci 13:1049803. [CrossRef]
- Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32 (9):947-951. [CrossRef]
- Wei X, Liu Q, Sun T, Jiao X, Liu C, Hua Y, Chen X, Wang K (2023) Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice. Plant Commun 4 (2):100474. [CrossRef]
- Xiang XJ, Sun LP, Yu P, Yang ZF, Zhang PP, Zhang YX, Wu WX, Chen DB, Zhan XD, Khan RM, Abbas A, Cheng SH, Cao LY (2021) The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet 134 (2):453-471. [CrossRef]
- Xie E, Li Y, Tang D, Lv Y, Shen Y, Cheng Z (2019) A strategy for generating rice apomixis by gene editing. J Integr Plant Biol 61 (8):911-916. [CrossRef]
- Xie Y, Zhang TH, Huang XZ, Xu C (2022) A two-in-one breeding strategy boosts rapid utilization of wild species and elite cultivars. Plant Biotechnology Journal 20 (5):800-802. [CrossRef]
- Xiong J, Hu F, Ren J, Huang Y, Liu C, Wang K (2023) Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 79:102877. [CrossRef]
- Xu ZY, Xu XM, Gong Q, Li ZY, Li Y, Wang S, Yang YY, Ma WX, Liu LY, Zhu B, Zou LF, Chen GY (2019) Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice. Mol Plant 12 (11):1434-1446. [CrossRef]
- Yang Y, Shen Z, Li Y, Xu C, Xia H, Zhuang H, Sun S, Guo M, Yan C (2022) Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol 64 (10):1860-1865. [CrossRef]
- Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4 (8):530-533. [CrossRef]
- Yu H, Li J (2022) Producing hybrid seeds like conventional rice. Cell Res 32 (11):959-960. [CrossRef]
- Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing R, Gao CX, Liang CZ, Li JY (2021) A route to de novo domestication of wild allotetraploid rice. Cell 184 (5):1156-+. [CrossRef]
- Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. J Exp Bot 71 (2):470-479. [CrossRef]
- Zhang L, Liu Y, Wei G, Lei T, Wu J, Zheng L, Ma H, He G, Wang N (2022a) POLLEN WALL ABORTION 1 is essential for pollen wall development in rice. Plant Physiol 190 (4):2229-2245. [CrossRef]
- Zhang L, Yu H, Ma B, Liu GF, Wang JJ, Wang JM, Gao RC, Li JJ, Liu JY, Xu J, Zhang YY, Li Q, Huang XH, Xu JL, Li JM, Qian Q, Han B, He ZH, Li JY (2017).A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8 ARTN14789. [CrossRef]
- Zhang M, Zhao R, Huang K, Huang S, Wang H, Wei Z, Li Z, Bian M, Jiang W, Wu T, Du X (2022b) The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. Plant J 112 (2):383-398. [CrossRef]
- Zhang R, Zhang S, Li J, Gao J, Song G, Li W, Geng S, Liu C, Lin Y, Li Y, Li G (2023a) CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. Plant Biotechnol J 21 (4):839-853. [CrossRef]
- Zhang S, Zhang R, Gao J, Song G, Li J, Li W, Qi Y, Li Y, Li G (2021) CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol J 19 (9):1684-1686. [CrossRef]
- Zhang W, Qi X, Zhi H, Ren Y, Zhang L, Gao Y, Sui Y, Zhang H, Tang S, Jia G, Xie C, Wu C, Diao X (2023b) A straight-forward seed production technology system for foxtail millet (Setaria italica). J Integr Plant Biol. [CrossRef]
- Zhang X, Shi C, Li S, Zhang B, Luo P, Peng X, Zhao P, Dresselhaus T, Sun MX (2023c) A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. Mol Plant 16 (2):471-480. [CrossRef]
- Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z (2022a) H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice. Plant Physiol 189 (2):1050-1064. [CrossRef]
- Zhao X, Yuan K, Liu Y, Zhang N, Yang L, Zhang Y, Wang Y, Ji J, Fang Z, Han F, Lv H (2022b) In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea. Plant Biotechnol J 20 (12):2242-2244. [CrossRef]
- Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X, Li J, Chen M, Dong X, Xu X, Li L, Li W, Liu W, Jin W, Lai J, Chen S (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5 (6):575-580. [CrossRef]
- Zhong Y, Wang Y, Chen B, Liu J, Wang D, Li M, Qi X, Liu C, Boutilier K, Chen S (2022) Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. J Integr Plant Biol 64 (6):1281-1294. [CrossRef]
- Zhou J, Li Z, Li Y, Zhao Q, Luan X, Wang L, Liu Y, Liu H, Zhang J, Yao D (2023a) Effects of Different Gene Editing Modes of CRISPR/Cas9 on Soybean Fatty Acid Anabolic Metabolism Based on GmFAD2 Family. Int J Mol Sci 24 (5). [CrossRef]
- Zhou J, Liu G, Zhao Y, Zhang R, Tang X, Li L, Jia X, Guo Y, Wu Y, Han Y, Bao Y, He Y, Han Q, Yang H, Zheng X, Qi Y, Zhang T, Zhang Y (2023b) An efficient CRISPR-Cas12a promoter editing system for crop improvement. Nat Plants. [CrossRef]
- Zhou Y, Xu S, Jiang N, Zhao X, Bai Z, Liu J, Yao W, Tang Q, Xiao G, Lv C, Wang K, Hu X, Tan J, Yang Y (2022) Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnol J 20 (5):876-885. [CrossRef]
- Zhu X, Zheng K, Lu L, Yu H, Wang F, Yang X, Bhat JA, Zhao B, Wang Y, Li H, Yang S, Feng X (2023) Disruption of CHORISMATE SYNTHASE1 leads to yellow-green variegation in soybean leaves. J Exp Bot. [CrossRef]
- Zhu XG, Zhu JK (2021) Precision genome editing heralds rapid de novo domestication for new crops. Cell 184 (5):1133-1134. [CrossRef]
- Zsogon A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36 (12):1211-+. [CrossRef]
- Zsogon A, Cermak T, Voytas D, Peres LE (2017) Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Sci 256:120-130. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).