Submitted:
09 July 2023
Posted:
12 July 2023
You are already at the latest version
Abstract
Keywords:
MSC: 15-XX; 15Axx; 15A15; 11Cxx; 65Fxx; 11C20; 65F40
1. Introduction
2. Results for more properties of determinants of cubic-matrix of order 2 and order 3
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orgest Zaka and Armend Salihu, (2023). The Laplace Method in calculate of Determinant of cubic-matrix of order 2 and order 3. [CrossRef]
- Armend Salihu and Orgest Zaka, (2023). The Determinant of Cubic-Matrix of order 2 and order 3: Some basic Properties and Algorithms. ArXiv: https://arxiv.org/abs/2306.13336. [CrossRef]
- A. Salihu, H. Snopce, A. Luma and J. Ajdari, "Optimization of Dodgson’s Condensation Method for Rectangular determinant Calculations", Advanced Mathematical Models and Applications, vol. 7, no. 3, pp. 264-274, 2022. http://jomardpublishing.com/UploadFiles/Files/journals/AMMAV1N1/V7N3/Salihu_et_al.pdf.
- Peters, J.F., Zaka, O. Dyck fundamental group on arcwise-connected polygon cycles. Afr. Mat.. 34, 31 (2023). [CrossRef]
- Zaka, O. Dilations of line in itself as the automorphism of the skew-field constructed over in the same line in Desargues affine plane. Applied Mathematical Sciences. 13, 231-237 (2019). [CrossRef]
- Zaka, O., Filipi, K. The transform of a line of Desargues affine plane in an additive group of its points. Int. J. Of Current Research. 8, 34983-34990 (2016). [CrossRef]
- Filipi, K., Zaka, O., Jusufi, A. The construction of a corp in the set of points in a line of Desargues affine plane. Matematicki Bilten. 43, 1-23 (2019), ISSN 0351-336X (print), ISSN 1857–9914 (online). [CrossRef]
- Zaka, O. A description of collineations-groups of an affine plane. Libertas Mathematica (N.S.). 37, 81-96 (2017), ISSN print: 0278 – 5307, ISSN online: 2182 – 567X, MR3828328.
- Zaka, O. Three Vertex and Parallelograms in the Affine Plane: Similarity and Addition Abelian Groups of Similarly n-Vertexes in the Desargues Affine Plane. Mathematical Modelling And Applications. 3, 9-15 (2018). arXiv:10.11648/j.mma.20180301.12.
- Zaka, O. Contribution to Reports of Some Algebraic Structures with Affine Plane Geometry and Applications. (Polytechnic University of Tirana,Tirana, Albania,2016), supervisor: K. Filipi, vii+113pp. [CrossRef]
- Orgest Zaka and James F. Peters. Isomorphic-dilations of the skew-fields constructed over parallel lines in the Desargues affine plane. Balkan J. Geom. Appl.. 25, 141-157 (2020), www.mathem.pub.ro/bjga/v25n1/B25-1zk-ZBG89.pdf. [CrossRef]
- Orgest Zaka and James Francis Peters. Ordered line and skew-fields in the Desargues affine plane. Balkan J. Geom. Appl.. 26, 141-156 (2021), www.mathem.pub.ro/bjga/v26n1/B26-1zb-ZBP43.pdf. [CrossRef]
- O. Zaka and M. A. Mohammed, "Skew-field of trace-preserving endomorphisms, of translation group in affine plane", Proyecciones (Antofagasta, On line), vol. 39, no. 4, pp. 823-850, Jul. 2020. [CrossRef]
- O. Zaka and M. A. Mohammed, "The endomorphisms algebra of translations group and associative unitary ring of trace-preserving endomorphisms in affine plane", Proyecciones (Antofagasta, On line), vol. 39, no. 4, pp. 821-834, Jul. 2020. [CrossRef]
- A. Salihu, H. Snopce, A. Luma and J. Ajdari, "Comparison of time complexity growth for different methods/algorithms for rectangular determinant calculations", ICRTEC 2023 - Proceedings: IEEE International Conference on Recent Trends in Electronics and Communication: Upcoming Technologies for Smart Systems. [CrossRef]
- A. Salihu, H. Snopce, J. Ajdari and A. Luma, "Generalization of Dodgson’s condensation method for calculating determinant of rectangular matrices", International Conference on Electrical, Computer and Energy Technologies (ICECET). [CrossRef]
- A. Salihu, H. Snopce, A. Luma and J. Ajdari, "Time Complexity Analysis for Cullis/Radic and Dodgson’s Generalized/Modified Method for Rectangular Determinants Calculations", International Journal of Computers and Their Applications, vol. 29, no. 4, pp. 236-246, 2022. http://isca-hq.org/Documents/Journal/Archive/2022/2022volume2904/2022volume290403.pdf.
- A. Salihu and F. Marevci, "Chio’s-like Method for Calculating the Rectangular (non-square) Determinants: Computer Algorithm Interpretation and Comparison", European Journal of Pure and Applied Mathematics, vol. 14, no. 2, pp. 431-450, 2021. [CrossRef]
- A. Salihu and F. Marevci, "Determinants Order Decrease/Increase for k Orders, Interpretation with Computer Algorithms and Comparison", International Journal of Mathematics and Computer Science, vol. 14, no. 2, pp. 501-518, 2021. http://ijmcs.future-in-tech.net/14.2/R-Marecvi-Salihu.pdf.
- A. Salihu, A. Jusufi and F. Salihu, "Comparison of Computer Execution Time of Cornice Determinant Calculation", International Journal of Mathematics and Computer Science, vol. 14, pp. 9-16, 2019. http://ijmcs.future-in-tech.net/14.1/R-Salihu2.pdf.
- A. Salihu, "A modern modification of Gjonbalaj-Salihu cornice determinant, transformation to semi-diagonal determinant", International Journal of Mathematics and Computer Science, vol. 13, pp. 1330138, 2018. http://ijmcs.future-in-tech.net/13.2/R-Salihu.pdf.
- ZAKA, O. (2017) 3D Matrix Ring with a “Common” Multiplication. Open Access Library Journal, 4, 1-11. 10.4236/oalib.1103593.
- Zaka, Orgest, The general linear group of degree n for 3D matrices GL(n; n; p; F). Libertas Mathematica, New Series. Lib. Math. (N.S.) 39, No. 1, 13–30 (2019; Zbl 1451.15007). [CrossRef]
- Artin, M. (1991) Algebra. Prentice Hall, Upper Saddle River.
- Bretscher, O. (2005) Linear Algebra with Applications. 3rd Edition, Prentice Hall, Upper Saddle River.
- Schneide, H. and Barker, G.P. (1973) Matrices and Linear Algebra (Dover Books on Mathematics). 2nd Revised Edition.
- David Poole: Linear Algebra. A Modern Introduction. Cengage Learning 2005, ISBN 0-534-99845-3, pp. 265–267.
- Harvey E. Rose: Linear Algebra. A Pure Mathematical Approach. Springer 2002, ISBN 3-7643-6905-1, pp. 57–60.
- Lang, S. (1987) Linear Algebra. Springer-Verlag, Berlin, New York.
- Amiri, M., Fathy, M., Bayat, M., Generalization of some determinantal identities for non-square matrices based on Radic’s definition, TWMS J. Pure Appl. Math. 1, no. 2 (2010), 163–175.
- Radić, M., A definition of determinant of rectangular matrix, Glas. Mat. Ser. III 1(21) (1966), 17–22.
- Radić, M., About a determinant of rectangular 2 × n matrix and its geometric interpretation, Beitr¨age Algebra Geom. 46, no. 2 (2005), 321–349.
- Anna Makarewicz, Piotr Pikuta, and Dominik Szalkowski. "Properties of the determinant of a rectangular matrix." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 68.1 (2014): null. <http://eudml.org/doc/289812>. [CrossRef]
- Milne-Thomson, L. (1941). Determinant Expansions. The Mathematical Gazette, 25(265), 130-135. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).