Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Data Fusion Approach to Assessing the Contribution of Wildland Fire Smoke to Fine Particulate Matter in California

Version 1 : Received: 9 July 2023 / Approved: 10 July 2023 / Online: 10 July 2023 (10:11:18 CEST)

A peer-reviewed article of this Preprint also exists.

Yang, H.; Ruiz-Suarez, S.; Reich, B.J.; Guan, Y.; Rappold, A.G. A Data-Fusion Approach to Assessing the Contribution of Wildland Fire Smoke to Fine Particulate Matter in California. Remote Sens. 2023, 15, 4246. Yang, H.; Ruiz-Suarez, S.; Reich, B.J.; Guan, Y.; Rappold, A.G. A Data-Fusion Approach to Assessing the Contribution of Wildland Fire Smoke to Fine Particulate Matter in California. Remote Sens. 2023, 15, 4246.

Abstract

The escalating frequency and severity of global wildfires necessitate an in-depth understanding and monitoring of wildfire smoke impacts, specifically its contribution to fine particulate matter (PM2.5). We propose a data-fusion method to study wildfire contribution to PM2.5 using satellite-derived smoke plume indicators and PM2.5 monitoring data. Our study incorporates two types of monitoring data, the high-quality but sparse Air Quality System (AQS) stations and the abundant but less accurate PurpleAir (PA) sensors that are gaining popularity among citizen scientists. We propose a multi-resolution spatiotemporal model specified in the spectral domain to calibrate the PA sensors against accurate AQS measurements, and leverage the two networks to estimate wildfire contribution to PM2.5 in California in 2020 and 2021. A Bayesian approach is taken to incorporate all uncertainties and our prior intuition that the dependence between networks, as well as the accuracy of PA network, vary by frequency. We find that 1% to 3% increase in PM2.5 concentration due to wildfire smoke, and that leveraging PA sensors improves accuracy.

Keywords

Bayesian analysis; calibration; citizen science; spatiotemporal methods; spectral analysis

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.