Submitted:
15 June 2023
Posted:
15 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Coherent states
1.2. The Husimi function and the Wehrl entropy
1.3. Entropic uncertainty relations
1.4. p-adic numbers
2. p-Adic coherent states
2.1. Canonical commutation relations
2.2. Vacuum vector
3. Entropy
3.1. Lower bound of the Wehrl entropy
- the Husimi function ,
- the Werhl entropy .
3.2. Entropic uncertainty relation
3.3. Mutually unbiased bases
References
- A. M. Perelomov. Coherent states for arbitrary Lie group. Commun. Math. Phys, 26, 222-236 (1972).
- A. Wehrl. On the relation between classical and quantum-mechanical entropy. Reports on Math. physics, 16, 3, 353-358 (1979).
- E. H. Lieb. Proof of an entropy conjecture of Wehrl. Commun. Math. Phys. 62, 35-41 (1978).
- E, Carlen. Some integral identities and inequalities for entire functions and their application to the coherent state transform. Journal of Functional Analysis 97, 231–249 (1991).
- E. H. Lieb, J. P. Solovej. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Mathematica. 212 (2), 379–398 (2014).
- V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, p-Adic analysis and mathematical physics, World Scientific, 1994.
- B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich and E. I. Zelenov, p-Adic mathematical physics: the first 30 years, p-Adic numbers, Ultram. Anal. Appl. 9, 87 (2017).
- I. I. Hirschman, Jr. A note on entropy. American Journal of Mathematics 79 (1), 152-156 (1957).
- I. Bialynicki-Birula, J. Mycielski. Uncertainty relations for information entropy in wave mechanics. Comm. Math. Phys. 44, 129-132 (1975).
- H. Maassen, J. B. M. Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988).
- K. Kraus. Complementary observables and uncertainty relations. Phys. Rev. D, bf 35, 10, 3070-3075 (1987).
- F. A. Berezin. The general concept of quantization. Commun. Math. Phys. 40, 153 (1975).
- S. Wehner, A. Winter. Entropic uncertainty relations – a survey. New Journal of Rhysics 12, 025009 (2010).
- R. L. Frank, E. H. Lieb. Entropy and uncertainty principle. Ann. Henri Poincare 13, 1711-1717 (2012).
- E. I. Zelenov. p-Adic model of quantum mechanics and quantum channels. Proc. Steklov Inst. Math., 285, 132-144 (2014).
- M. A. Ballester and S. Wehner. Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases. Phys. Rev. A 75, 022319 (2007).
- E. I. Zelenov. On Geometry of p-adic Coherent States and Mutually Unbiased Bases. Preprints.org 2023, 2023051569. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
