This paper presents a study aimed at enhancing the performance of quantum dot light-emitting didoes (QLEDs) by employing a solution-processed molybdenum oxide (MoO3) nanoparticle (NP) as a hole injection layer (HIL). The study investigates the impact of varying the concentrations of the MoO3 NP layer on device characteristics and explores the underlying mechanisms responsible for the observed enhancements. Experimental techniques such as an X-ray diffraction and field-emission transmission electron microscopy were employed to confirm the formation of MoO3 NPs during the synthesis process. Ultraviolet photoelectron spectroscopy is employed to analyze the electron structure of the QLEDs. The QLED with an 8 mg/mL concentration of MoO3 nanoparticles achieves remarkable improvements in device performance, with a maximum luminance of 69,240.7 cd/cm2, maximum current efficiency of 56.0 cd/A, and maximum external quantum efficiency (EQE) of 13.2%. The obtained results signify a notable progress in comparison to QLED without HIL and those utilizing the widely used poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) HIL. They exhibit a remarkable enhancement of 59.5% and 26.4% in maximum current efficiency, respectively, as well as a significant improvement of 42.7% and 20.0% in maximum EQE, respectively. This study opens up new possibilities for the selection of HIL and the fabrication of solution-processed QLEDs, contributing to the potential commercialization of these devices in the future.
Engineering, Electrical and Electronic Engineering
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.