Submitted:
06 June 2023
Posted:
07 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Kepler problem: the Runge-Lenz vector and Bertrand’s theorem
2.1. The Runge-Lenz, eccentricity and Hamilton vectors
2.2. The Bertrand theorem
- First Binet formula:
- Second Binet formula:
3. The Runge-Lenz vector in quantum mechanics
3.1. Construction of the rotation group - Quantum mechanical analog to the Runge-Lenz vector
3.2. The algebra of the , generators
3.3. Identifying the closed algebra of and with the group
3.4. Energy levels of hydrogen atom
4. Analogy with the harmonic potential: invariant tensor
- The orbit is closed (Bertrand’s theorem).
- The motion is periodic (degeneracy).
- There is a Laplace invariant.
- The motion has a dynamical symmetry higher than the rotation geometrical symmetry.
- For each value of the energy, one can find an infinity of classical orbits of different shapes.
- The separation of variables applies in several systems of coordinates.
- The quantum states are degenerate.
4.1. The Laplace tensor
4.2. The Kustaanheimo-Stiefel transformation
4.3. Integrability and similarity
5. Invariant in the presence of an electric field: the Redmond invariant
6. Oks’ supergeneralized Runge-Lenz vector for the two-center problem
7. Invariants in the presence of a magnetic field
7.1. The Landau-Avron-Sivardière approach
7.2. The Zeeman effect
7.3. The spectrum of the hydrogen atom in electric and magnetic fields
7.4. Magnetic monopole
8. The charge-dyon system
8.1. Classical approach of the charged monopole problem
8.2. Quantum-mechanical MIC-Kepler problem
9. Conclusion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MIC | McIntosh and Cisneros |
References
- Noether, E. Gleichungen mit vorgeschriebener Gruppe, Mathematische Annalen 1917, 78, 221–229. 78.
- Arnold, V. I. Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1978).
- Hermann, J. Metodo d’investigare l’Orbite de’ Pianeti, nell’ipotesi che le forze centrali o pure le gravità Giornale de Letterari D’Italia 1710, 2, 447–467. 2.
- Hermann, J. Extrait d’une lettre de M. Hermann à M. Bernoulli datée de Padoue le 12, Mémoires de l’Académie Royale des Sciences 1710, Paris 1712, p. 519–521.
- Bernoulli, J. L. Extrait de la réponse de M. Bernoulli à M. Hermann datée de Basle le 7 octobre 1710, Mémoires de l’Académie Royale des Sciences 1710, Paris 1712, p. 521-533.
- Laplace, P. S. Traité de mécanique céleste, Tome I (1799), Première Partie, Livre II, pp. 165ff (P.S. Laplace, Celestial Mechanics, Vol. I, Chelsea, New York, 1969, p. 344, Equation (572)).
- Hamilton, W. R. The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction. Proc. R. Ir. Acad 1847, 3, p–344ff. [Google Scholar]
- Runge, C. Vektoranalysis, Vol. I p. 70 (S. Hirzel, 1919).
- Lenz, W. Über den Bewegungsverlauf und Quantenzustande der gestorten Keplerbewegung. Z. Phys. 1924, 24, 197–207. [Google Scholar] [CrossRef]
- Pauli, W. Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik, Z. Phys. 1926, 36, 336–363. [Google Scholar] [CrossRef]
- Guichardet, A. Histoire d’un vecteur tricentenaire. Gazette de la société mathématique de France 2008, 117, 23–33. (In French) [Google Scholar]
- Bertrand, J. Théorème relatif au mouvement dun point attiré vers un centre fixe. C. R. Acad. Sci. 1873, 77, 849–853. [Google Scholar]
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Phys. 1935, 98, 145–154. [Google Scholar] [CrossRef]
- Bargmann, V. Zur Theorie des Wasserstoffatoms: Bemerkungen zur gleichnamigen Arbeit von V. Fock. Z. Phys. 1936, 99, 576–582. [Google Scholar] [CrossRef]
- Jauch, J. M.; Hill, E. L. On the problem of degeneracy in quantum mechanics. Phys. Rev. 1940, 57, 641–645. [Google Scholar] [CrossRef]
- Redmond, P. J. Generalization of the Runge-Lenz vector in the presence of an electric field. Phys. Rev. 1964, 133, B1352–B1353. [Google Scholar] [CrossRef]
- Kryukov, N.; Oks, E. Supergeneralized Runge-Lenz vector in the problem of two Coulomb or Newton centers. Phys. Rev. A 2012, 85, 054503. [Google Scholar] [CrossRef]
- Oks, E.; Uzer, T. A robust perturbation theory for degenerate states based on exact constants of the motion. Europhys. Lett. 2000, 49, 554–557. [Google Scholar] [CrossRef]
- Schwinger, J. A Magnetic model of matter. Science 1969, 165(3895), 757–761. [Google Scholar] [CrossRef] [PubMed]
- Dirac, P. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. (London) A 1931, 133, 60–72. [Google Scholar]
- Goldstein, H. Celestial mechanics, 2nd edition, Addison-Wesley, Reading (1980).
- Goldstein, H. Prehistory of the Runge-Lenz vector. Am. J. Phys. 1975, 43, 737–738. [Google Scholar] [CrossRef]
- Goldstein, H. More on the prehistory of the Laplace or Runge–Lenz vector. Am. J. Phys. 1976, 44, 1123–1124. [Google Scholar] [CrossRef]
- Collas, P. Algebraic solution of the Kepler problem using the Runge-Lenz vector. Am. J. Phys. 1970, 38, 253–255. [Google Scholar] [CrossRef]
- Takehara, T. Note on the properties of the Runge-Lenz Vector. Mem. Fac. Sci., Shimane Univ. 1982, 16, 53–60. [Google Scholar]
- Binet, J. P. Mémoire sur l’intégration des équations linéaires aux différences finies, d’un ordre quelconque, à coefficients variables. Comptes Rendus hebdomadaires des séances de l’Académie des Sciences (Paris) 1843, 17, 559–567. [Google Scholar]
- Bringuier, E. Eccentricity as a vector: a concise derivation of the orbit equation in celestial mechanics. Eur. J. Phys. 2004, 25, 369–372. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Hamilton’s eccentricity vector generalized to Newton wonders. The Observatory 2006, 126, 176–182. [Google Scholar]
- Hey, J. D. On the Runge–Lenz–Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas. J. Phys. B: At., Mol. Opt. Phys. 2015, 48, 185701. [Google Scholar] [CrossRef]
- Martínez y romero, R. P.; Nún˜ez-Yépez, H. N. and Salas-Brito, A. L. The Hamilton vector as an extra constant of motion in the Kepler problem. Eur. J. Phys. 1993, 14, 71–73. [Google Scholar] [CrossRef]
- Martinez-y-Romero, R. P.; Nun˜ez-Yépez, H. N.; Salas-Brito, A. L. Closed orbits and constants of motion in classical mechanics. Eur. J. Phys. 1992, 13, 26–31. [Google Scholar] [CrossRef]
- Sivardière, J. Comments on the dynamical invariants of the Kepler and harmonic motions. Eur. J. Phys. 1992, 13, 64–69. [Google Scholar] [CrossRef]
- Sivardière, J. Precession of elliptic orbits. Am. J. Phys. 1984, 52, 909–912. [Google Scholar] [CrossRef]
- Sivardière, J. Perturbed elliptic motion. Eur. J. Phys. 1986, 2, 283. [Google Scholar] [CrossRef]
- Santos, F. C.; Soares, V.; Tort, A. C. An English translation of Bertrand’s theorem. Latin-American Journal of Physics Education 2011, 5, 694–696. [Google Scholar]
- Brown, L. S. Forces giving no orbit precession. Am. J. Phys. 1978, 46, 930–931. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics (Addison Wesley, New York, 1981), pp. 601-605.
- Tikochinsky, Y. A simplified proof of Bertrand’s theorem. Am. J. Phys. 1988, 56, 1073–1075. [Google Scholar] [CrossRef]
- Castro-Quilantán, J. L.; Del Río-Correa, J. L.; Medina, M. A. R. Alternative proof of Bertrand’s theorem using a phase space approach. Revista Mexicana de Física 1996, 42, 867–877. [Google Scholar]
- Zarmi, Y. The Bertrand theorem revisited. Am. J. Phys. 2002, 70, 446–449. [Google Scholar] [CrossRef]
- Fasano, A.; Marni, S. Analytic Mechanics - An Introduction (Oxford University Press, Oxford, England, 2006).
- Grandati, Y. , Bérard, A.; Ménas, F. Inverse problem and Bertrand’s theorem. Am. J. Phys. 2008, 76, 782–787. [Google Scholar] [CrossRef]
- Santos, F.; Soares, V.; Tort, A. Determination of the apsidal angle and Bertrand’s theorem. Phys. Rev. E 2009, 79, 036605. [Google Scholar] [CrossRef]
- Chin, S. A. A truly elementary proof of Bertrand’s theorem. Am. J. Phys. 2015, 83, 320–323. [Google Scholar] [CrossRef]
- Galbraith, J.; Williams, J. An even simpler “truly elementary” proof of Bertrand’s theorem. Journal of Undergraduate Reports in Physics 2019, 29, 100005. [Google Scholar] [CrossRef]
- Rax, J.-M. Mécanique analytique - Adiabaticité, résonances, chaos (Dunod, 2020).
- Schiff, L. I. Quantum mechanics, Volume 1 (McGraw-Hill, 1968).
- Maclay, G. J. Dynamical symmetries of the H atom, one of the most important tools of modern physics: SO(4) to SO(4,2), background, theory, and use in calculating radiative shifts. Symmetry 2020, 12, 1323. [Google Scholar] [CrossRef]
- Pain, J.-C. Sum rules for Clebsch–Gordan coefficients from group theory and Runge-Lenz-Pauli vector. J. Phys. Commun. 2022, 6, 055007. [Google Scholar] [CrossRef]
- Greenberg, D. F. Accidental degeneracy. Am. J. Phys. 1966, 34, 1101–1109. [Google Scholar] [CrossRef]
- Sivardière, J. Comparaison entre le mouvement de Kepler et le mouvement elliptique harmonique. Bull. Union Phys. 1993, Vol. 87.
- Fradkin, D. M. Three-dimensional isotropic oscillator and SU(3). Am. J. Phys. 1965, 3, 207–211. [Google Scholar] [CrossRef]
- Sivardière, J. Laplace vectors for the harmonic oscillator, Am. J. Phys. 1989, 57, 524–525. [Google Scholar]
- Buch, L. H.; Denman, H. H. Conserved and piecewise-conserved Runge vectors for the isotropic harmonic oscillator. Am. J. Phys. 1975, 43, 1046–1048. [Google Scholar] [CrossRef]
- Zhou, G. Tensor-product representation of Laplace-Runge-Lenz vector for two-body Kepler systems. Wuhan University Journal of Natural Sciences 2017, 22, 51–56. [Google Scholar] [CrossRef]
- Dyson, F. J. Mathematics in the physical sciences. Sci. Am. 1964, 211, 128–147. [Google Scholar] [CrossRef]
- Stedman, G. E. Visualising higher continuous symmetries in the Jahn-Teller effect. Eur. J. Phys. 1983, 4, 156–161. [Google Scholar] [CrossRef]
- Grant, A. K.; Rosner, J. L. Classical orbits in power-law potentials. Am. J. Phys. 1994, 62, 310–315. [Google Scholar] [CrossRef]
- Bateman, S. The mapping of the Coulomb problem into the oscillator. Am. J. Phys. 1992, 60, 833–836. [Google Scholar] [CrossRef]
- Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 1965, 218, 204–219. [Google Scholar] [CrossRef]
- Kibler, M.; Négadi, T. Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator. Lett. Nuovo Cim. 1984, 39, 319–323. [Google Scholar] [CrossRef]
- Chen, A. C.; Kibler, M. Connection between the hydrogen atom and the four-dimensional oscillator. Phys. Rev. A 1985, 31, 3960–3963. [Google Scholar] [CrossRef]
- Lambert, D.; Kibler, M. An algebraic and geometric approach to non-bijective quadratic transformations. J. Phys. A: Math. Gen. 1988, 21, 307–343. [Google Scholar] [CrossRef]
- Iwai, T. On reduction of two degrees of freedom Hamiltonian system by an action, and as a dynamical group. J. Math. Phys. 1985, 26, 885–893. [Google Scholar] [CrossRef]
- Boiteux, M. Theory of nonbijective canonical transformations in mechanics: Application to the Coulomb problem. J. Math. Phys. 1982, 3, 1311–1314. [Google Scholar] [CrossRef]
- Yoshida, H. A new derivation of the Kustaanheimo-Stiefel variable. Celest. Mech. 1982, 28, 239–242. [Google Scholar] [CrossRef]
- Weigert, S.; Thomas, H. Classical degeneracy and the existence of additional constants of motion. Am. J. Phys. 1981, 61, 272–277. [Google Scholar] [CrossRef]
- Prince G., E.; Eliezer, C.J. On the Lie symmetries of the classical Kepler problem. J. Phys. A 1981, 14, 587–596. [Google Scholar] [CrossRef]
- Campuzano-Cardonata, O. J.; Nun˜ez-Yepez, H. N.; Salas-Brito, A. L.; Sanchez-Ortiz, G. I. Constant of motion for the hydrogen atom in an external field: a classical view. Eur. J. Phys. 1995, 16, 220–222. [Google Scholar] [CrossRef]
- Hughes, J. W. B. Stark states and O(4) symmetry of hydrogenic atoms. Proc. Phys. Soc. 1967, 91, 810–818. [Google Scholar] [CrossRef]
- Gurarie, D. in Symmetries and Laplacians: introduction to harmonic analysis, group representations and applications, North Holland Mathematics Studies Vol. 174 (North Holland, Amsterdam, 1992), p. 390.
- Krivchenkov V., D.; Liberman, M. A. Quantum numbers for the problem of two coulomb centers. Sov. Phys. J. 1968, 11, 14–17. [Google Scholar] [CrossRef]
- Sanders, P.; Oks, E. Correcting the input data for calculating the asymmetry of hydrogenic spectral lines in plasmas. Atoms 2018, 6, 9. [Google Scholar] [CrossRef]
- Sholin, G. V.; Demura, A. V.; Lisitsa, V. S. Electron impact broadening of Stark sublevels of a hydrogen atom in a plasma. 1972, Preprint IAE-2232.
- Gavrilenko, V. P. Resonant modification of quasistatis profiles of spectral lines of hydrogen in a plasma under the influence of noncollinear harmonic electric fields. Sov. Phys. JETP 1991, 92, 624–630. [Google Scholar]
- Clark, C. W. Case of broken symmetry in the quadratic Zeeman effect. Phys. Rev. A 1981, 24, 605–607. [Google Scholar] [CrossRef]
- Sholin, G. V. On the nature of the asymmetry of the spectra line profiles of hydrogen in a dense plasma. Opt. Spectrosc. 1969, 26, 275–282. [Google Scholar]
- Liberman, M. A. Hydrogen atom in a magnetic field as an exactly solvable system without dynamical symmetries. Phys. Lett. A 2022, 445, 128250. [Google Scholar] [CrossRef]
- Avron, Y. Harmonic motions. Am. J. Phys. 1986, 54, 659–660. [Google Scholar] [CrossRef]
- Davey, K. R.; Karras, M. On the constants of motion governing an electron in a magnetic field constrained by an electrostatic central force. Eur. J. Phys. 1983, 4, 165–169. [Google Scholar] [CrossRef]
- Ritter, O. M. Symmetries and invariants for some cases involving charged particles and general electromagnetic fields: a brief review. Braz. J. Phys. 2000, 30, 438–445. [Google Scholar] [CrossRef]
- Kerner, R. Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. H. Poincaré, 9.
- Jackiw, R. Dynamical symmetry of the magnetic monopole. Ann. Phys. 1980, 129, 183–200. [Google Scholar] [CrossRef]
- Sivardière, J. On the classical motion of a charge in the field of a magnetic monopole. Eur. J. Phys. 2000, 21, 183–190. [Google Scholar] [CrossRef]
- Solov’ev, E. A. Approximate motion integral for a hydrogen atom in a magnetic field. JETP Lett. 1981, 54, 265–268. [Google Scholar]
- Solov’ev, E. A. The hydrogen atom in a weak magnetic field. Sov. Phys. JETP 1982, 55, 1017–1022. [Google Scholar]
- Herrick, D. R. Symmetry of the quadratic Zeeman effect for hydrogen. Phys. Rev. A 1982, 26, 323–329. [Google Scholar] [CrossRef]
- Sivardière, J. On the motion of a charge in a magnetic field. Eur. J. Phys. 1988, 9, 61–63. [Google Scholar] [CrossRef]
- Yuzbashyan, E. A.; Happer, W.; Altshuler, B. L. and Shastry, S. B. Extracting hidden symmetry from the energy spectrum. J. Phys. A.: Math. Gen. 2588. [Google Scholar]
- Demura, A.; Oks, E. New method for polarization measurements of magnetic fields in dense plasmas. Transactions on Plasma Science 1998, 26, 1251–1258. [Google Scholar] [CrossRef]
- Doron, R.; Arad, R.; Tsigutkin, K.; Osin, D.; Weingarten, A.; Starobinets, A.; Bernshtam, V. A.; Stambulchik, E.; Ralchenko, Yu. V.; Maron, Y.; Fruchtman, A.; Fisher, A.; Huba, J. D.; Roth, M. Plasma dynamics in pulsed strong magnetic fields. Phys. Plasmas 2004, 11, 2411–2418. [Google Scholar] [CrossRef]
- Stambulchik, E.; Tsigutkin, K.; Maron, Y. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett. 2007, 98, 225001. [Google Scholar] [CrossRef] [PubMed]
- Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D. A.; Jacobs, V. L.; Seely, J. F.; Oliver, B. V.; Fisher, A. Beyond Zeeman spectroscopy: magnetic-field diagnostics with Stark-dominated line shapes. Phys. Plasmas 2011, 18, 093301. [Google Scholar] [CrossRef]
- Kieu, N.; rosato, J.; Stamm, R.; Kovacˇević-Dojcinović, J.; Dimitrijević, M. S.; Popović, L. Cˇ; Simić, Z. A New Analysis of Stark and Zeeman Effects on hydrogen lines in magnetized DA white dwarfs. Atoms 2017, 5, 44. [Google Scholar] [CrossRef]
- Dalimier, E. Oks, E. X-ray spectroscopy based diagnostic of gigaGauss magnetic fields during relativistic laser-plasma interactions. Atoms 2018, 6, 60. [Google Scholar] [CrossRef]
- Alexiou, S. Line shapes in a magnetic field: trajectory modifications I: electrons. Atoms 2019, 7, 52. [Google Scholar] [CrossRef]
- Alexiou, S. Line shapes in a magnetic field: trajectory modifications II: full collision-time statistics. Atoms 2019, 7, 94. [Google Scholar] [CrossRef]
- Rosato, J. Hydrogen line shapes in plasmas with large magnetic fields. Atoms 2020, 8, 74. [Google Scholar] [CrossRef]
- Ferri, S.; Peyrusse, O.; Calisti, A. Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields. Matter Radiat. at Extremes 2022, 7, 015901. [Google Scholar] [CrossRef]
- Demkov, Yu. N.; Monozon, B. S.; Ostrovskii, V. N. Energy Levels of a Hydrogen Atom in Crossed Electric and Magnetic Fields. Sov. Phys. JETP 1970, 30, 775–776. [Google Scholar]
- Braun, P. A.; Solov’ev, E. A. Transformation of the spectrum of atomic hydrogen in crossed electric and magnetic fields. J. Phys. B: At. Mol. Opt. Phys. 1984, 17, L211–L216. [Google Scholar] [CrossRef]
- Solov’ev, E. A. Second order perturbation theory for the hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP 1983, 58, 63–66. [Google Scholar]
- Poincaré, H. Remarques sur une expérience de M. Birkeland. C. R. Acad. Sc., Paris 1896, 123, 530–533. (In French) [Google Scholar]
- ’t Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 1974, 79, 276–284. [Google Scholar] [CrossRef]
- Polyakov, A. M. Particle Spectrum in the Quantum Field Theory. JETP Letters 1974, 20, 194–195. [Google Scholar]
- Mardoyan, L. G.; Petrosyan, L. S.; Sarkisyan, H. A. Charge-dyon bound system in the spherical quantum well. Phys. Rev. A 2003, 68, 014103. [Google Scholar] [CrossRef]
- Zwanziger, D. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys. Rev. 1480. [Google Scholar]
- McIntosh, H.; Cisneros, A. Degeneracy in the presence of a magnetic monopole. J. Math. Phys. 1970, 11, 896–916. [Google Scholar] [CrossRef]
- Rabson, D. A.; Huesman, J. F.; Fisher, B. N. Cohomology for anyone. Found. Phys. 2003, 33, 1769–1796. [Google Scholar] [CrossRef]
- McDuff, D.; Salamon, D. Introduction to Symplectic Topology (Oxford Mathematical Monographs, 1998).
- Iwai, T.; Katayama, N. Two classes of dynamical systems all of whose bounded trajectories are closed. 1994, 35, 2914–2933.
- Nersessian, A.; Ter-Antonyan, V. Charge-Dyon system as the reduced oscillator. Mod. Phys. Lett. 1994, 9, 2431–2436. [Google Scholar] [CrossRef]
- Iwai, T.; Uwano, Y. The quantized MIC-Kepler problem and its symmetry group for negative energies. J. Phys. A 1988, 21, 4083–4104. [Google Scholar] [CrossRef]
- Nersessian, A.; Ter-Antonyan, V. Quantum oscillator and a bound system of two dyons. Mod. Phys. Lett. 1995, 10, 2633–2638. [Google Scholar]
- Nersessian, A.; Ter-Antonyan, V.; Tsulaia, M. M. A note on quantum Bohlin transformation. Mod. Phys. Lett. 1996, A11, 1605–1610. [Google Scholar] [CrossRef]
- Nersessian, A. P.; Ter-Antonyan, V. M. Anyons, Monopole and Coulomb problem. Phys. Atom. Nucl. 1998, 61, 1756–1761. [Google Scholar]
- Iwai, T. The geometry of the SU(2) Kepler problem. J. Geom. Phys. 1990, 7, 507–535. [Google Scholar] [CrossRef]
- Mardoyan, L. G.; Sissakian, A. N.; Ter-Antonyan, V. M. 8D oscillator as a hidden SU(2) monopole. Phys. Atom. Nucl. 1998, 61, 1746–1750. [Google Scholar]
- Mardoyan, L. G.; Sissakian, A. N.; Ter-Antonyan, V. M. Hidden symmetry of the Yang–Coulomb monopole. Mod. Phys. Lett. A 1999, 14, 1303–1307. [Google Scholar] [CrossRef]
- Yang, C. N. Generalization of Dirac’s monopole to SU2 gauge fields. J. Math. Phys. 1978, 19, 320–328. [Google Scholar] [CrossRef]
- Mardoyan, L. G.; Sissakian, A. N.; Ter-Antonyan, V. M. Park-Tarter matrix for a dyon-dyon system. Int. J. Mod. Phys. A 1997, 12, 237–242. [Google Scholar] [CrossRef]
- Mardoyan, L. G.; Sissakian, A. N.; Ter-Antonyan, V. M. Bases and interbasis transformations for the SU(2) monopole. Theor. Math. Phys. 2000, 123, 451–462. [Google Scholar] [CrossRef]
- Mardoyan, L. G. Five-dimensional SU(2)-monopole: Continuous spectrum. Phys. Atom. Nucl. 2002, 65, 1063–1069. [Google Scholar] [CrossRef]
- Gritsev, V. V.; Kurochkin, Yu. A.; Otchik, V. S. Nonlinear symmetry algebra of the MIC-Kepler problem on the sphere S3. J. Phys. A 2000, 33, 4903–4910. [Google Scholar] [CrossRef]
- Yoshida, T. Two methods of generalisation of the Laplace–Runge–Lenz vector. Eur. J. Phys. 1987, 8, 258–259. [Google Scholar] [CrossRef]
- Fradkin, D. M. Existence of the dynamic symmetries O(4) and SU(3) for all classical central potential problems. Prog. Theor. Phys. 1967, 37, 798–812. [Google Scholar] [CrossRef]
- Peres, A. A classical constant of motion with discontinuities. J. Phys. A: Math. Gen. 1979, 12, 1711–1713. [Google Scholar] [CrossRef]
- de Castro Moreira, I. A generalisation of the Landau vector. Eur. J. Phys. 1989, 10, 269–271. [Google Scholar] [CrossRef]
- Oks, E. Review of classical analytical results for the motion of a Rydberg electron around a polar molecule under magnetic or electric fields of arbitrary strengths in axially symmetric configurations. Symmetry 2021, 13, 2171. [Google Scholar] [CrossRef]
- Kazakov, K. V. A novel examination of the similarity between a perturbed hydrogen atom and an anharmonic oscillator. J. Math. Phys. 2019, 60, 102102. [Google Scholar] [CrossRef]
- Demkov, Yu. N. The definition of the symmetry group of a quantum system. The anisotropic oscillator. Sov. Phys. JETP 1963, 17, 1349–1351. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
