With the rapid development of Internet of Things (IoT)-based near-earth remote sensing technology, the problem of network intrusion for near-earth remote sensing systems has become more complex and large-scale. Therefore, it is essential to seek an intelligent, automated, and robust network intrusion detection method. In recent years, network intrusion detection methods based on graph neural networks (GNNs) have been proposed. However, there are still some practical issues with these methods. For example, they have not taken into consideration the characteristics of near-earth remote sensing systems, the state of the nodes, and the temporal features. Therefore, this article analyzes the characteristics of existing near-earth remote sensing systems and proposes a spatio-temporal graph attention network (N-STGAT) that considers the state of nodes. The proposed network applies spatiotemporal graph neural networks to the network intrusion detection of near-earth remote sensing systems and validates the effectiveness of the proposed method on the latest flow-based dataset.
Computer Science and Mathematics, Artificial Intelligence and Machine Learning
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.