Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Impact of Higher-Order Interactions on the Synchronization of Hindmarsh-Rose Neuron Maps under Different Coupling Functions

Version 1 : Received: 18 May 2023 / Approved: 19 May 2023 / Online: 19 May 2023 (09:39:42 CEST)

A peer-reviewed article of this Preprint also exists.

Mehrabbeik, M.; Ahmadi, A.; Bakouie, F.; Jafari, A.H.; Jafari, S.; Ghosh, D. The Impact of Higher-Order Interactions on the Synchronization of Hindmarsh–Rose Neuron Maps under Different Coupling Functions. Mathematics 2023, 11, 2811. Mehrabbeik, M.; Ahmadi, A.; Bakouie, F.; Jafari, A.H.; Jafari, S.; Ghosh, D. The Impact of Higher-Order Interactions on the Synchronization of Hindmarsh–Rose Neuron Maps under Different Coupling Functions. Mathematics 2023, 11, 2811.

Abstract

In network analysis, links depict the connections between each pair of network nodes. However, such pairwise connections fail to consider the interactions among more agents, which may be indirectly connected. Such non-pairwise or higher-order connections can be signified by involving simplicial complexes. The higher-order connections become even more noteworthy when it comes to neuronal network synchronization, an emerging phenomenon responsible for the many biological processes in real-world phenomena. However, involving higher-order interactions may considerably increase the computational costs. To confound this issue, map-based models are more suitable since they are faster, simpler, more flexible, and computationally more optimal. Therefore, this paper addresses the impact of pairwise and non-pairwise neuronal interactions on the synchronization state of 10 coupled memristive Hindmarsh-Rose neuron maps. To this aim, electrical, inner linking, and chemical synaptic functions are considered as 2- and 3-body interactions in three homogenous and two non-homogenous cases. The results show that through chemical pairwise and non-pairwise synapses, the neurons achieve synchrony with the weakest coupling strengths.

Keywords

Higher-order network; Simplicial complex; Synchronization; Neuron; Map-based model

Subject

Physical Sciences, Theoretical Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.