Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

GPR Target Recognition Based on Improved YOLOv3-SPP

Version 1 : Received: 18 May 2023 / Approved: 19 May 2023 / Online: 19 May 2023 (03:09:36 CEST)

How to cite: Zhong, Y.; Li, K.; Mo, S.; Liu, X. GPR Target Recognition Based on Improved YOLOv3-SPP. Preprints 2023, 2023051363. https://doi.org/10.20944/preprints202305.1363.v1 Zhong, Y.; Li, K.; Mo, S.; Liu, X. GPR Target Recognition Based on Improved YOLOv3-SPP. Preprints 2023, 2023051363. https://doi.org/10.20944/preprints202305.1363.v1

Abstract

When ground-penetrating radar is used to detect targets within concrete, the location of the targets, the identification of different shapes, properties and less obvious echoes all greatly increase the interpretation time of the staff and can easily cause misjudgment of the echo images. In this paper, the ground-penetrating radar echo images (B-scan) after processing are mean filtered to eliminate the direct waves that interfere greatly with the echoes. The RFB-s structure is added to the YOLOv3-SPP network structure, while the Anchor value is optimized and the EIOU loss function is introduced. For four types of data with different shapes and properties at random target locations, three models, YOLOv3, YOLOv3-SPP and the improved YOLOv3-SPP, are used for classification and identification, and the proposed algorithm models are comprehensively evaluated using model evaluation metrics. The experimental results show that the algorithm models proposed in this paper have good recognition effect in ground-penetrating radar echo image target detection.

Keywords

YOLOv3-SPP; ground-penetrating radar; EIOU; target detection

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.