Submitted:
17 May 2023
Posted:
17 May 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Chemical Structure and Main Natural Sources of Caffeine
3. Benefits of Caffeine on Health
3.1. Cancer
3.2. Anti-Inflammatory and Immunomodulation
3.2.1. Autoimmune Diseases and Immunomodulation
3.2.2. Neuroinflammation
3.2.3. Ocular Diseases
3.2.4. Respiratory Diseases
3.3. Neurodegenerative Diseases
3.4. Cardiovascular Diseases
4. Caffeine Impact on Sports Performance
4.1. Optimal Dosage
4.2. Timing of Intake
4.3. Abstinence
4.4. Training Time Vs Caffeine Consumption
4.5. Physiological Factors
4.6. Gender
4.7. Caffeine Consumers or not
5. Nanotechnology-Based Delivery Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products 2020, 83, 770-803. [CrossRef]
- Gonçalves, A.C.; Falcão, A.; Alves, G.; Lopes, J.A.; Silva, L.R. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022, 14. [CrossRef]
- Li, C.Q.; Lei, H.M.; Hu, Q.Y.; Li, G.H.; Zhao, P.J. Recent Advances in the Synthetic Biology of Natural Drugs. Front Bioeng Biotechnol 2021, 9, 691152. [CrossRef]
- Sharifi-Rad, J.; Ozleyen, A.; Boyunegmez Tumer, T.; Oluwaseun Adetunji, C.; El Omari, N.; Balahbib, A.; Taheri, Y.; Bouyahya, A.; Martorell, M.; Martins, N.; et al. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019, 9. [CrossRef]
- Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Coelho, D.B.; Rodacki, A.; FR, D.E.-O.; Bishop, D.J.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine Increases Endurance Performance via Changes in Neural and Muscular Determinants of Performance Fatigability. Medicine and science in sports and exercise 2022, 54, 1591-1603. [CrossRef]
- Jodra, P.; Lago-Rodríguez, A.; Sánchez-Oliver, A.J.; López-Samanes, A.; Pérez-López, A.; Veiga-Herreros, P.; San Juan, A.F.; Domínguez, R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. Journal of the International Society of Sports Nutrition 2020, 17, 2. [CrossRef]
- Sampaio-Jorge, F.; Morales, A.P.; Pereira, R.; Barth, T.; Ribeiro, B.G. Caffeine increases performance and leads to a cardioprotective effect during intense exercise in cyclists. Scientific Reports 2021, 11, 24327. [CrossRef]
- San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019, 11. [CrossRef]
- White, J.R., Jr.; Padowski, J.M.; Zhong, Y.; Chen, G.; Luo, S.; Lazarus, P.; Layton, M.E.; McPherson, S. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clinical toxicology (Philadelphia, Pa.) 2016, 54, 308-312. [CrossRef]
- Błaszczyk-Bębenek, E.; Jagielski, P.; Schlegel-Zawadzka, M. Caffeine Consumption in a Group of Adolescents from South East Poland—A Cross Sectional Study. Nutrients 2021, 13, 2084. [CrossRef]
- Aguiar, A.S.; Speck, A.E.; Canas, P.M.; Cunha, R.A. Neuronal adenosine A2A receptors signal ergogenic effects of caffeine. Scientific Reports 2020, 10, 13414. [CrossRef]
- James, J.E. Maternal caffeine consumption and pregnancy outcomes: a narrative review with implications for advice to mothers and mothers-to-be. BMJ evidence-based medicine 2021, 26, 114-115. [CrossRef]
- Karcz-Kubicha, M.; Antoniou, K.; Terasmaa, A.; Quarta, D.; Solinas, M.; Justinova, Z.; Pezzola, A.; Reggio, R.; Müller, C.E.; Fuxe, K.; et al. Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2003, 28, 1281-1291. [CrossRef]
- Liu, A.G.; Arceneaux, K.P., 3rd; Chu, J.T.; Jacob, G., Jr.; Schreiber, A.L.; Tipton, R.C.; Yu, Y.; Johnson, W.D.; Greenway, F.L.; Primeaux, S.D. The effect of caffeine and albuterol on body composition and metabolic rate. Obesity (Silver Spring, Md.) 2015, 23, 1830-1835. [CrossRef]
- Lopes, J.P.; Pliássova, A.; Cunha, R.A. The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A(1) and A(2A) receptors. Biochemical pharmacology 2019, 166, 313-321. [CrossRef]
- McCreedy, A.; Bird, S.; Brown, L.J.; Shaw-Stewart, J.; Chen, Y.F. Effects of maternal caffeine consumption on the breastfed child: a systematic review. Swiss medical weekly 2018, 148, w14665. [CrossRef]
- Burke, T.M.; Markwald, R.R.; McHill, A.W.; Chinoy, E.D.; Snider, J.A.; Bessman, S.C.; Jung, C.M.; O'Neill, J.S.; Wright, K.P., Jr. Effects of caffeine on the human circadian clock in vivo and in vitro. Science translational medicine 2015, 7, 305ra146. [CrossRef]
- Staack, A.; Distelberg, B.; Moldovan, C.; Belay, R.E.; Sabaté, J. The Impact of Caffeine Intake on Mental Health Symptoms in Postmenopausal Females with Overactive Bladder Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of women's health (2002) 2022, 31, 819-825. [CrossRef]
- EFSA Panel on Dietetic Products, N.; Allergies. Scientific Opinion on the safety of caffeine. EFSA Journal 2015, 13, 4102. [CrossRef]
- Addicott, M.A.; Yang, L.L.; Peiffer, A.M.; Burnett, L.R.; Burdette, J.H.; Chen, M.Y.; Hayasaka, S.; Kraft, R.A.; Maldjian, J.A.; Laurienti, P.J. The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Human brain mapping 2009, 30, 3102-3114. [CrossRef]
- Jahrami, H.; Al-Mutarid, M.; Penson, P.E.; Al-Islam Faris, M.; Saif, Z.; Hammad, L. Intake of Caffeine and Its Association with Physical and Mental Health Status among University Students in Bahrain. Foods (Basel, Switzerland) 2020, 9. [CrossRef]
- Rios-Leyvraz, M.; Bochud, M.; Tabin, R.; Genin, B.; Russo, M.; Rossier, M.F.; Eap, C.B.; Bovet, P.; Chiolero, A. Monitoring caffeine intake in children with a questionnaire and urine collection: a cross-sectional study in a convenience sample in Switzerland. European journal of nutrition 2020, 59, 3537-3543. [CrossRef]
- Weibel, J.; Lin, Y.S.; Landolt, H.P.; Berthomier, C.; Brandewinder, M.; Kistler, J.; Rehm, S.; Rentsch, K.M.; Meyer, M.; Borgwardt, S.; et al. Regular Caffeine Intake Delays REM Sleep Promotion and Attenuates Sleep Quality in Healthy Men. Journal of biological rhythms 2021, 36, 384-394. [CrossRef]
- Abrahão, F.R.; Rocha, L.C.R.; Santos, T.A.; Carmo, E.L.d.; Pereira, L.A.S.; Borges, S.V.; Pereira, R.G.F.A.; Botrel, D.A. Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT 2019, 103, 116-124. [CrossRef]
- Khazaeli, P.; Pardakhty, A.; Shoorabi, H. Caffeine-Loaded Niosomes: Characterization and in Vitro Release Studies. Drug Delivery 2007, 14, 447-452. [CrossRef]
- Milkova, V.; Goycoolea, F.M. Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid and Polymer Science 2020, 298, 1035-1041. [CrossRef]
- Mohammadi, N.; Ehsani, M.R.; Bakhoda, H. Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. Flavour and Fragrance Journal 2018, 33, 357-366. [CrossRef]
- Shao, M.; Li, S.; Tan, C.P.; Kraithong, S.; Gao, Q.; Fu, X.; Zhang, B.; Huang, Q. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. International Journal of Biological Macromolecules 2021, 173, 118-127. [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food & function 2014, 5, 1718-1726. [CrossRef]
- Ashihara, H.; Suzuki, T. Distribution and biosynthesis of caffeine in plants. Frontiers in bioscience : a journal and virtual library 2004, 9, 1864-1876. [CrossRef]
- Ogita, S.; Uefuji, H.; Morimoto, M.; Sano, H. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant molecular biology 2004, 54, 931-941. [CrossRef]
- Tavagnacco, L.; Schnupf, U.; Mason, P.E.; Saboungi, M.-L.; Cesàro, A.; Brady, J.W. Molecular Dynamics Simulation Studies of Caffeine Aggregation in Aqueous Solution. The Journal of Physical Chemistry B 2011, 115, 10957-10966. [CrossRef]
- Usabiaga, I.; Camiruaga, A.; Calabrese, C.; Maris, A.; Fernández, J.A. Exploring Caffeine–Phenol Interactions by the Inseparable Duet of Experimental and Theoretical Data. Chemistry – A European Journal 2019, 25, 14230-14236. [CrossRef]
- Vella-Zarb, L.; Baisch, U. Crystal water as the mol ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa hydrate. Acta Crystallographica Section E Crystallographic Communications 2018, 74, 559-562. [CrossRef]
- Coleman, W.F. Chocolate: Theobromine and Caffeine. Journal of Chemical Education 2004, 81, 1232. [CrossRef]
- Judelson, D.A.; Preston, A.G.; Miller, D.L.; Muñoz, C.X.; Kellogg, M.D.; Lieberman, H.R. Effects of theobromine and caffeine on mood and vigilance. Journal of clinical psychopharmacology 2013, 33, 499-506. [CrossRef]
- Knapik, J.J.; Steelman, R.A.; Trone, D.W.; Farina, E.K.; Lieberman, H.R. Prevalence of caffeine consumers, daily caffeine consumption, and factors associated with caffeine use among active duty United States military personnel. Nutrition Journal 2022, 21, 22. [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2014, 63, 136-142. [CrossRef]
- Informer, C. Caffeine Content of Drinks. Available online: https://www.caffeineinformer.com/the-caffeine-database (accessed on Nov 26, 2022).
- Jeon, J.-S.; Kim, H.-T.; Jeong, I.-H.; Hong, S.-R.; Oh, M.-S.; Yoon, M.-H.; Shim, J.-H.; Jeong, J.H.; Abd El-Aty, A.M. Contents of chlorogenic acids and caffeine in various coffee-related products. Journal of Advanced Research 2019, 17, 85-94. [CrossRef]
- McCusker, R.R.; Fuehrlein, B.; Goldberger, B.A.; Gold, M.S.; Cone, E.J. Caffeine content of decaffeinated coffee. Journal of analytical toxicology 2006, 30, 611-613. [CrossRef]
- Mills, C.E.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P. The effect of processing on chlorogenic acid content of commercially available coffee. Food chemistry 2013, 141, 3335-3340. [CrossRef]
- Ridley, C.P.-M. Water Joe Caffeine Content. Available online: https://caffeinepark.com/water-joe-caffeine-content-1599/ (accessed on Nov 26, 2022).
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029-3030. [CrossRef]
- Iragorri, N.; de Oliveira, C.; Fitzgerald, N.; Essue, B. The Out-of-Pocket Cost Burden of Cancer Care—A Systematic Literature Review. Current Oncology 2021, 28, 1216-1248. [CrossRef]
- Tran, K.B.; Lang, J.J.; Compton, K.; Xu, R.; Acheson, A.R.; Henrikson, H.J.; Kocarnik, J.M.; Penberthy, L.; Aali, A.; Abbas, Q.; et al. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2022, 400, 563-591. [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57-70. [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674. [CrossRef]
- Cadoná, F.C.; Dantas, R.F.; de Mello, G.H.; Silva-Jr, F.P. Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition 2022, 62, 7222-7241. [CrossRef]
- Gaascht, F.; Dicato, M.; Diederich, M. Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. Genes & Nutrition 2015, 10, 51. [CrossRef]
- Cui, W.Q.; Wang, S.T.; Pan, D.; Chang, B.; Sang, L.X. Caffeine and its main targets of colorectal cancer. World journal of gastrointestinal oncology 2020, 12, 149-172. [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer discovery 2022, 12, 31-46. [CrossRef]
- El-Far, A.H.; Darwish, N.H.E.; Mousa, S.A. Senescent Colon and Breast Cancer Cells Induced by Doxorubicin Exhibit Enhanced Sensitivity to Curcumin, Caffeine, and Thymoquinone. Integrative cancer therapies 2020, 19, 1534735419901160. [CrossRef]
- Machado, K.L.; Marinello, P.C.; Silva, T.N.X.; Silva, C.F.N.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Oxidative Stress in Caffeine Action on the Proliferation and Death of Human Breast Cancer Cells MCF-7 and MDA-MB-231. Nutrition and Cancer 2021, 73, 1378-1388. [CrossRef]
- Venkata Charan Tej, G.N.; Neogi, K.; Verma, S.S.; Chandra Gupta, S.; Nayak, P.K. Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. European Journal of Pharmacology 2019, 859, 172538. [CrossRef]
- Higuchi, T.; Kawaguchi, K.; Miyake, K.; Han, Q.; Tan, Y.; Oshiro, H.; Sugisawa, N.; Zhang, Z.; Razmjooei, S.; Yamamoto, N.; et al. Oral Recombinant Methioninase Combined with Caffeine and Doxorubicin Induced Regression of a Doxorubicin-resistant Synovial Sarcoma in a PDOX Mouse Model. Anticancer research 2018, 38, 5639-5644. [CrossRef]
- Xu, H.; Hu, L.; Liu, T.; Chen, F.; Li, J.; Xu, J.; Jiang, L.; Xiang, Z.; Wang, X.; Sheng, J. Caffeine Targets G6PDH to Disrupt Redox Homeostasis and Inhibit Renal Cell Carcinoma Proliferation. Frontiers in Cell and Developmental Biology 2020, 8. [CrossRef]
- Tonkaboni, A.; Lotfibakhshaiesh, N.; Danesh, P.; Tajerian, R.; Ziaei, H. Evaluation of Inhibitory Effects of Caffeine on Human Carcinoma Cells. Nutrition and Cancer 2021, 73, 1998-2002. [CrossRef]
- Li, N.; Zhang, P.; Kiang, K.M.Y.; Cheng, Y.S.; Leung, G.K.K. Caffeine Sensitizes U87-MG Human Glioblastoma Cells to Temozolomide through Mitotic Catastrophe by Impeding G2 Arrest. BioMed research international 2018, 2018, 5364973. [CrossRef]
- Maugeri, G.; D'Amico, A.G.; Rasà, D.M.; Saccone, S.; Federico, C.; Magro, G.; Cavallaro, S.; D'Agata, V. Caffeine Effect on HIFs/VEGF Pathway in Human Glioblastoma Cells Exposed to Hypoxia. Anti-cancer agents in medicinal chemistry 2018, 18, 1432-1439. [CrossRef]
- Stern, L.; Giese, N.; Hackert, T.; Strobel, O.; Schirmacher, P.; Felix, K.; Gaida, M.M. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. Journal of Cancer 2018, 9, 711-725. [CrossRef]
- Wang, Z.; Zhang, L.; Wan, Z.; He, Y.; Huang, H.; Xiang, H.; Wu, X.; Zhang, K.; Liu, Y.; Goodin, S.; et al. Atorvastatin and Caffeine in Combination Regulates Apoptosis, Migration, Invasion and Tumorspheres of Prostate Cancer Cells. Pathology oncology research : POR 2020, 26, 209-216. [CrossRef]
- Wrześniok, D.; Rzepka, Z.; Respondek, M.; Beberok, A.; Rok, J.; Szczepanik, K.; Buszman, E. Caffeine modulates growth and vitality of human melanotic COLO829 and amelanotic C32 melanoma cells: Preliminary findings. Food and Chemical Toxicology 2018, 120, 566-570. [CrossRef]
- Pascua, S.M.; McGahey, G.E.; Ma, N.; Wang, J.J.; Digman, M.A. Caffeine and Cisplatin Effectively Targets the Metabolism of a Triple-Negative Breast Cancer Cell Line Assessed via Phasor-FLIM. International Journal of Molecular Sciences 2020, 21, 2443. [CrossRef]
- Meisaprow, P.; Aksorn, N.; Vinayanuwattikun, C.; Chanvorachote, P.; Sukprasansap, M. Caffeine Induces G0/G1 Cell Cycle Arrest and Inhibits Migration through Integrin αv, β3, and FAK/Akt/c-Myc Signaling Pathway. Molecules 2021, 26, 7659. [CrossRef]
- Fagundes, T.R.; Madeira, T.B.; Melo, G.P.; Bordini, H.P.; Marinello, P.C.; Nixdorf, S.L.; Cecchini, A.L.; Luiz, R.C. Caffeine improves the cytotoxic effect of dacarbazine on B16F10 murine melanoma cells. Bioorganic Chemistry 2022, 120, 105576. [CrossRef]
- Lin, C.-K.; Liu, S.-T.; Wu, Z.-S.; Wang, Y.-C.; Huang, S.-M. Mechanisms of Cisplatin in Combination with Repurposed Drugs against Human Endometrial Carcinoma Cells. Life 2021, 11, 160. [CrossRef]
- Chen, J.-C.; Hwang, J.-H. Caffeine Inhibits Growth of Temozolomide-Treated Glioma via Increasing Autophagy and Apoptosis but Not via Modulating Hypoxia, Angiogenesis, or Endoplasmic Reticulum Stress in Rats. Nutrition and Cancer 2022, 74, 1090-1096. [CrossRef]
- Wang, Z.; Gu, C.; Wang, X.; Lang, Y.; Wu, Y.; Wu, X.; Zhu, X.; Wang, K.; Yang, H. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Medical Oncology 2019, 36, 97. [CrossRef]
- Igarashi, K.; Kawaguchi, K.; Zhao, M.; Kiyuna, T.; Miyake, K.; Miyake, M.; Nelson, S.D.; Dry, S.M.; Li, Y.; Yamamoto, N.; et al. Exquisite Tumor Targeting by Salmonella A1-R in Combination with Caffeine and Valproic Acid Regresses an Adult Pleomorphic Rhabdomyosarcoma Patient-Derived Orthotopic Xenograft Mouse Model. Translational oncology 2020, 13, 393-400. [CrossRef]
- Abe, K.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tsuchiya, H. Caffeine citrate enhanced cisplatin antitumor effects in osteosarcoma and fibrosarcoma in vitro and in vivo. BMC Cancer 2019, 19, 689. [CrossRef]
- Tej, G.; Neogi, K.; Nayak, P.K. Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody. International immunopharmacology 2019, 77, 106002. [CrossRef]
- Higuchi, T.; Oshiro, H.; Miyake, K.; Sugisawa, N.; Han, Q.; Tan, Y.; Park, J.; Zhang, Z.; Razmjooei, S.; Yamamoto, N.; et al. Oral Recombinant Methioninase, Combined With Oral Caffeine and Injected Cisplatinum, Overcome Cisplatinum-Resistance and Regresses Patient-derived Orthotopic Xenograft Model of Osteosarcoma. Anticancer research 2019, 39, 4653-4657. [CrossRef]
- Popović, D.; Lalošević, D.; Miljković, D.; Popović, K.; Čapo, I.; Popović, J. Caffeine induces metformin anticancer effect on fibrosarcoma in hamsters. Eur Rev Med Pharmacol Sci 2018, 22, 2461-2467. [CrossRef]
- Bartolomeu, A.R.; Romualdo, G.R.; Lisón, C.G.; Besharat, Z.M.; Corrales, J.A.M.; Chaves, M.Á.G.; Barbisan, L.F. Caffeine and Chlorogenic Acid Combination Attenuate Early-Stage Chemically Induced Colon Carcinogenesis in Mice: Involvement of oncomiR miR-21a-5p. International Journal of Molecular Sciences 2022, 23, 6292. [CrossRef]
- Xiao, T.S. Innate immunity and inflammation. Cellular & Molecular Immunology 2017, 14, 1-3. [CrossRef]
- Turvey, S.E.; Broide, D.H. Innate immunity. The Journal of allergy and clinical immunology 2010, 125, S24-32. [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794-811. [CrossRef]
- Chow, M.T.; Möller, A.; Smyth, M.J. Inflammation and immune surveillance in cancer. Seminars in cancer biology 2012, 22, 23-32. [CrossRef]
- Sharif, K.; Watad, A.; Bragazzi, N.L.; Adawi, M.; Amital, H.; Shoenfeld, Y. Coffee and autoimmunity: More than a mere hot beverage! Autoimmunity Reviews 2017, 16, 712-721. [CrossRef]
- Lau, C.E.; Falk, J.L. Dose-dependent surmountability of locomotor activity in caffeine tolerance. Pharmacology Biochemistry and Behavior 1995, 52, 139-143. [CrossRef]
- Laux, D.C.; Klesius, P.H.; Jeter, W.S. Suppressive effects of caffeine on the immune response of the mouse to sheep erythrocytes. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 1973, 144, 633-638. [CrossRef]
- Rosenthal, L.A.; Taub, D.D.; Moors, M.A.; Blank, K.J. Methylxanthine-induced inhibition of the antigen- and superantigen-specific activation of T and B lymphocytes. Immunopharmacology 1992, 24, 203-217. [CrossRef]
- Açıkalın, B.; Sanlier, N. Coffee and its effects on the immune system. Trends in Food Science & Technology 2021, 114, 625-632. [CrossRef]
- Horrigan, L.A.; Kelly, J.P.; Connor, T.J. Immunomodulatory effects of caffeine: Friend or foe? Pharmacology & Therapeutics 2006, 111, 877-892. [CrossRef]
- Wang, H.Q.; Song, K.Y.; Feng, J.Z.; Huang, S.Y.; Guo, X.M.; Zhang, L.; Zhang, G.; Huo, Y.C.; Zhang, R.R.; Ma, Y.; et al. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Journal of molecular neuroscience : MN 2022, 72, 97-112. [CrossRef]
- Moases Ghaffary, E.; Abtahi Froushani, S.M. Immunomodulatory benefits of mesenchymal stem cells treated with Caffeine in adjuvant-induced arthritis. Life sciences 2020, 246, 117420. [CrossRef]
- Haskó, G.; Pacher, P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. Journal of Leukocyte Biology 2008, 83, 447-455. [CrossRef]
- Porkka-Heiskanen, T.; Kalinchuk, A.V. Adenosine, energy metabolism and sleep homeostasis. Sleep medicine reviews 2011, 15, 123-135. [CrossRef]
- Rodas, L.; Martínez, S.; Riera-Sampol, A.; Moir, H.J.; Tauler, P. Effects of Caffeine and 5-Caffeoylquinic Acid on Blood Cell In Vitro Cytokine Production in Response to Lipopolysaccharide Stimulation. Applied Sciences 2022, 12, 7322. [CrossRef]
- Li, W.; Dai, S.; An, J.; Li, P.; Chen, X.; Xiong, R.; Liu, P.; Wang, H.; Zhao, Y.; Zhu, M.; et al. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 2008, 151, 1198-1207. [CrossRef]
- Iris, M.; Tsou, P.-S.; Sawalha, A.H. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity. Clinical Immunology 2018, 192, 68-77. [CrossRef]
- Sorenson, C.M.; Song, Y.-S.; Zaitoun, I.S.; Wang, S.; Hanna, B.A.; Darjatmoko, S.R.; Gurel, Z.; Fisk, D.L.; McDowell, C.M.; McAdams, R.M.; et al. Caffeine Inhibits Choroidal Neovascularization Through Mitigation of Inflammatory and Angiogenesis Activities. Frontiers in Cell and Developmental Biology 2021, 9. [CrossRef]
- Dabouz, R.; Cheng, C.W.H.; Abram, P.; Omri, S.; Cagnone, G.; Sawmy, K.V.; Joyal, J.-S.; Desjarlais, M.; Olson, D.; Weil, A.G.; et al. An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. Journal of Neuroinflammation 2020, 17, 359. [CrossRef]
- Krogh Nielsen, M.; Subhi, Y.; Molbech, C.R.; Falk, M.K.; Nissen, M.H.; Sørensen, T.L. Systemic Levels of Interleukin-6 Correlate With Progression Rate of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science 2019, 60, 202-208. [CrossRef]
- Conti, F.; Lazzara, F.; Romano, G.L.; Platania, C.B.M.; Drago, F.; Bucolo, C. Caffeine Protects Against Retinal Inflammation. Frontiers in Pharmacology 2022, 12. [CrossRef]
- Mesek, I.; Nellis, G.; Lass, J.; Metsvaht, T.; Varendi, H.; Visk, H.; Turner, M.A.; Nunn, A.J.; Duncan, J.; Lutsar, I. Medicines prescription patterns in European neonatal units. International journal of clinical pharmacy 2019, 41, 1578-1591. [CrossRef]
- Shenk, E.E.; Bondi, D.S.; Pellerite, M.M.; Sriram, S. Evaluation of Timing and Dosing of Caffeine Citrate in Preterm Neonates for the Prevention of Bronchopulmonary Dysplasia. The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG 2018, 23, 139-145. [CrossRef]
- Rutkowska, M.; Hożejowski, R.; Helwich, E.; Borszewska-Kornacka, M.K.; Gadzinowski, J. Severe bronchopulmonary dysplasia – incidence and predictive factors in a prospective, multicenter study in very preterm infants with respiratory distress syndrome. The Journal of Maternal-Fetal & Neonatal Medicine 2019, 32, 1958-1964. [CrossRef]
- Yuan, Y.; Yang, Y.; Lei, X.; Dong, W. Caffeine and bronchopulmonary dysplasia: Clinical benefits and the mechanisms involved. Pediatric Pulmonology 2022, 57, 1392-1400. [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cellular & Molecular Immunology 2021, 18, 2114-2127. [CrossRef]
- Liao, J.; Kapadia, V.S.; Brown, L.S.; Cheong, N.; Longoria, C.; Mija, D.; Ramgopal, M.; Mirpuri, J.; McCurnin, D.C.; Savani, R.C. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nature Communications 2015, 6, 8977. [CrossRef]
- Chen, S.; Wu, Q.; Zhong, D.; Li, C.; Du, L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respiratory Research 2020, 21, 140. [CrossRef]
- Endesfelder, S.; Strauß, E.; Bendix, I.; Schmitz, T.; Bührer, C. Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. Oxidative medicine and cellular longevity 2020, 2020, 3840124. [CrossRef]
- Kovács, E.G.; Alatshan, A.; Budai, M.M.; Czimmerer, Z.; Bíró, E.; Benkő, S. Caffeine Has Different Immunomodulatory Effect on the Cytokine Expression and NLRP3 Inflammasome Function in Various Human Macrophage Subpopulations. Nutrients 2021, 13, 2409. [CrossRef]
- Abbasi, A.; Froushani, S.M.A.; Delirezh, N.; Mostafaei, A. Caffeine alters the effects of bone marrow-derived mesenchymal stem cells on neutrophils. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2018, 27, 463-468. [CrossRef]
- Abbasi, A.; Kukia, N.R.; Froushani, S.M.A.; Hashemi, S.M. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils. Life sciences 2018, 199, 41-47. [CrossRef]
- Zhao, W.; Ma, L.; Cai, C.; Gong, X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. International journal of biological sciences 2019, 15, 1571-1581. [CrossRef]
- Tabolacci, C.; Cordella, M.; Rossi, S.; Bonaccio, M.; Eramo, A.; Mischiati, C.; Beninati, S.; Iacoviello, L.; Facchiano, A.; Facchiano, F. Targeting Melanoma-Initiating Cells by Caffeine: In Silico and In Vitro Approaches. Molecules 2021, 26, 3619. [CrossRef]
- de Alcântara Almeida, I.; Mancebo Dorvigny, B.; Souza Tavares, L.; Nunes Santana, L.; Vitor Lima-Filho, J. Anti-inflammatory activity of caffeine (1,3,7-trimethylxanthine) after experimental challenge with virulent Listeria monocytogenes in Swiss mice. International immunopharmacology 2021, 100, 108090. [CrossRef]
- Liu, C.-W.; Tsai, H.-C.; Huang, C.-C.; Tsai, C.-Y.; Su, Y.-B.; Lin, M.-W.; Lee, K.-C.; Hsieh, Y.-C.; Li, T.-H.; Huang, S.-F.; et al. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. American Journal of Physiology-Endocrinology and Metabolism 2018, 314, E433-E447. [CrossRef]
- Markova, E.V.; Knyazheva, M.A.; Tikhonova, M.A.; Amstislavskaya, T.G. Structural and functional characteristics of the hippocampus in depressive-like recipients after transplantation of in vitro caffeine-modulated immune cells. Neuroscience letters 2022, 786, 136790. [CrossRef]
- Hosny, E.N.; Sawie, H.G.; Elhadidy, M.E.; Khadrawy, Y.A. Evaluation of antioxidant and anti-inflammatory efficacy of caffeine in rat model of neurotoxicity. Nutritional Neuroscience 2019, 22, 789-796. [CrossRef]
- Wadhwa, M.; Chauhan, G.; Roy, K.; Sahu, S.; Deep, S.; Jain, V.; Kishore, K.; Ray, K.; Thakur, L.; Panjwani, U. Caffeine and Modafinil Ameliorate the Neuroinflammation and Anxious Behavior in Rats during Sleep Deprivation by Inhibiting the Microglia Activation. Frontiers in Cellular Neuroscience 2018, 12. [CrossRef]
- Eraky, S.M.; El-Mesery, M.; El-Karef, A.; Eissa, L.A.; El-Gayar, A.M. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2018, 101, 49-57. [CrossRef]
- Rossetto, I.M.U.; Cagnon, V.H.A.; Kido, L.A.; Lizarte Neto, F.S.; Tirapelli, L.F.; Tirapelli, D.P.d.C.; de Almeida Chuffa, L.G.; Martinez, F.E.; Martinez, M. Caffeine consumption attenuates ethanol-induced inflammation through the regulation of adenosinergic receptors in the UChB rats cerebellum. Toxicology Research 2021, 10, 835-849. [CrossRef]
- Raoofi, A.; Delbari, A.; Nasiry, D.; Eslampour, H.; Golmohammadi, R.; Javadinia, S.s.; Sadrzadeh, R.; Mojadadi, M.-S.; Rustamzadeh, A.; Akhlaghi, M.; et al. Caffeine modulates apoptosis, oxidative stress, and inflammation damage induced by tramadol in cerebellum of male rats. Journal of Chemical Neuroanatomy 2022, 123, 102116. [CrossRef]
- Farokhi-Sisakht, F.; Farhoudi, M.; Mahmoudi, J.; Farajdokht, F.; Kahfi-Ghaneh, R.; Sadigh-Eteghad, S. Effect of intranasal administration of caffeine on mPFC ischemia-induced cognitive impairment in BALB/c mice. Acta neurobiologiae experimentalis 2022, 82, 295-303. [CrossRef]
- Olopade, F.; Femi-Akinlosotu, O.; Ibitoye, C.; Shokunbi, T. Probing Caffeine Administration as a Medical Management for Hydrocephalus: An Experimental Study. Pediatric Neurology 2022, 135, 12-21. [CrossRef]
- Faddladdeen, K.A.J.; Ali, S.S. Caffeine modulates the effect of nicotine on CD68-positive macrophage and apoptosis in thymic and ileal lymphoid tissues. Bioscience Research 2021, 18(4): , 3316-3325.
- Baldissera, M.D.; Souza, C.F.; Descovi, S.N.; Petrolli, T.G.; da Silva, A.S.; Baldisserotto, B. Caffeine modulates brain purinergic signaling in Nile tilapia (Oreochromis niloticus) under hypoxia conditions: improvement of immune and inflammatory responses. Fish physiology and biochemistry 2019, 45, 551-560. [CrossRef]
- Förderreuther, S.; Lampert, A.; Hitier, S.; Lange, R.; Weiser, T. The Impact of Baseline Pain Intensity on the Analgesic Efficacy of Ibuprofen/Caffeine in Patients with Acute Postoperative Dental Pain: Post Hoc Subgroup Analysis of a Randomised Controlled Trial. Advances in Therapy 2020, 37, 2976-2987. [CrossRef]
- Zheng, J.C.; Chen, S. Translational Neurodegeneration in the era of fast growing international brain research. Translational Neurodegeneration 2022, 11, 1. [CrossRef]
- Wu, S.; Bekhit, A.E.-D.A.; Wu, Q.; Chen, M.; Liao, X.; Wang, J.; Ding, Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science & Technology 2021, 108, 164-176. [CrossRef]
- Zhang, Y.; Yang, H.; Wei, D.; Zhang, X.; Wang, J.; Wu, X.; Chang, J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. Exploration 2021, 1, 20210115. [CrossRef]
- Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neuroscience & Therapeutics 2017, 23, 272-290. [CrossRef]
- Silvestro, S.; Sindona, C.; Bramanti, P.; Mazzon, E. A State of the Art of Antioxidant Properties of Curcuminoids in Neurodegenerative Diseases. International Journal of Molecular Sciences 2021, 22, 3168. [CrossRef]
- Herden, L.; Weissert, R. The Effect of Coffee and Caffeine Consumption on Patients with Multiple Sclerosis-Related Fatigue. Nutrients 2020, 12, 2262. [CrossRef]
- Houghton, V.; Du Preez, A.; Lefèvre-Arbogast, S.; de Lucia, C.; Low, D.Y.; Urpi-Sarda, M.; Ruigrok, S.R.; Altendorfer, B.; González-Domínguez, R.; Andres-Lacueva, C.; et al. Caffeine Compromises Proliferation of Human Hippocampal Progenitor Cells. Frontiers in Cell and Developmental Biology 2020, 8. [CrossRef]
- Gupta, R.C.; Srivastava, A.; Lall, R. Toxicity Potential of Nutraceuticals. Methods in molecular biology (Clifton, N.J.) 2018, 1800, 367-394. [CrossRef]
- Pereira-Figueiredo, D.; Brito, R.; Araújo, D.S.M.; Nascimento, A.A.; Lyra, E.S.B.; Cheibub, A.M.S.S.; Pereira Netto, A.D.; Ventura, A.L.M.; Paes-de-Carvalho, R.; Calaza, K.C. Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic Signalling 2020, 16, 41-59. [CrossRef]
- Pereira-Figueiredo, D.; Nascimento, A.A.; Cunha-Rodrigues, M.C.; Brito, R.; Calaza, K.C. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cellular and Molecular Neurobiology 2022, 42, 1693-1725. [CrossRef]
- Yasin, F.; Assad, S.; Talpur, A.S.; Zahid, M.; Malik, S.A. Combination Therapy for Multidrug-Resistant Klebsiella Pneumoniae Urinary Tract Infection. Cureus 2017, 9, e1503. [CrossRef]
- Ruggiero, M.; Calvello, R.; Porro, C.; Messina, G.; Cianciulli, A.; Panaro, M.A. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? International Journal of Molecular Sciences 2022, 23, 12958. [CrossRef]
- Manalo, R.V.M.; Medina, P.M.B. Caffeine Protects Dopaminergic Neurons From Dopamine-Induced Neurodegeneration via Synergistic Adenosine-Dopamine D2-Like Receptor Interactions in Transgenic Caenorhabditis elegans. Frontiers in Neuroscience 2018, 12. [CrossRef]
- Biswas, S.; Bagchi, A. Study of the Effects of Nicotine and Caffeine for the Treatment of Parkinson's Disease. Applied biochemistry and biotechnology 2022. [CrossRef]
- Lim, K.-L.; Dawson, V.L.; Dawson, T.M. Parkin-mediated lysine 63-linked polyubiquitination: A link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiology of Aging 2006, 27, 524-529. [CrossRef]
- Wilkaniec, A.; Lenkiewicz, A.M.; Babiec, L.; Murawska, E.; Jęśko, H.M.; Cieślik, M.; Culmsee, C.; Adamczyk, A. Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implications for Parkinson’s Disease Pathology. Frontiers in Aging Neuroscience 2021, 13. [CrossRef]
- Luan, Y.; Ren, X.; Zheng, W.; Zeng, Z.; Guo, Y.; Hou, Z.; Guo, W.; Chen, X.; Li, F.; Chen, J.-F. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum. Frontiers in Neuroscience 2018, 12. [CrossRef]
- Yan, R.; Zhang, J.; Park, H.-J.; Park, E.S.; Oh, S.; Zheng, H.; Junn, E.; Voronkov, M.; Stock, J.B.; Mouradian, M.M. Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB. Proceedings of the National Academy of Sciences 2018, 115, E12053-E12062, doi:doi:10.1073/pnas.1813365115.
- Farrokhi, M.R.; Emamghoreishi, M.; Amiri, A.; Keshavarz, M. Neuroprotective effects of caffeine against beta-amyliod neurotoxicity: The involvement of glycogen synthase kinase-3β protein. Physiology and Pharmacology 2019, 23, 150-153.
- Janitschke, D.; Nelke, C.; Lauer, A.A.; Regner, L.; Winkler, J.; Thiel, A.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019, 9, 689. [CrossRef]
- Fabiani, C.; Murray, A.P.; Corradi, J.; Antollini, S.S. A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacology 2018, 135, 464-473. [CrossRef]
- Molska, G.R.; Paula-Freire, L.I.G.; Sakalem, M.E.; Köhn, D.O.; Negri, G.; Carlini, E.A.; Mendes, F.R. Green coffee extract attenuates Parkinson's-related behaviors in animal models. Anais da Academia Brasileira de Ciencias 2021, 93, e20210481. [CrossRef]
- Khan, A.; Ikram, M.; Muhammad, T.; Park, J.; Kim, M.O. Caffeine Modulates Cadmium-Induced Oxidative Stress, Neuroinflammation, and Cognitive Impairments by Regulating Nrf-2/HO-1 In Vivo and In Vitro. Journal of Clinical Medicine 2019, 8, 680. [CrossRef]
- Sun, H.; Gonzalez, F.; McQuillen, P.S. Caffeine Restores Background EEG Activity Independent of Infarct Reduction after Neonatal Hypoxic Ischemic Brain Injury. Developmental Neuroscience 2020, 42, 72-82. [CrossRef]
- Gonçalves, D.F.; Tassi, C.C.; Amaral, G.P.; Stefanello, S.T.; Dalla Corte, C.L.; Soares, F.A.; Posser, T.; Franco, Jeferson L; Carvalho, N.R. Effects of caffeine on brain antioxidant status and mitochondrial respiration in acetaminophen-intoxicated mice. Toxicology Research 2020, 9, 726-734. [CrossRef]
- Karuppagounder, S.S.; Uthaythas, S.; Govindarajulu, M.; Ramesh, S.; Parameshwaran, K.; Dhanasekaran, M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochemistry international 2021, 148, 105066. [CrossRef]
- Di Martino, E.; Bocchetta, E.; Tsuji, S.; Mukai, T.; Harris, R.A.; Blomgren, K.; Ådén, U. Defining a Time Window for Neuroprotection and Glia Modulation by Caffeine After Neonatal Hypoxia-Ischaemia. Molecular Neurobiology 2020, 57, 2194-2205. [CrossRef]
- Soontarapornchai, K.; Cai, C.L.; Ahmad, T.; Aranda, J.V.; Hand, I.; Beharry, K.D. Pharmacodynamic Effects of Standard versus High Caffeine Doses in the Developing Brain of Neonatal Rats Exposed to Intermittent Hypoxia. International Journal of Molecular Sciences 2021, 22, 3473. [CrossRef]
- Garcez, M.L.; Damiani, A.P.; Pacheco, R.; Rodrigues, L.; de Abreu, L.L.; Alves, M.C.; de Andrade, V.M.; Boeck, C.R. Caffeine Neuroprotection Decreases A2A Adenosine Receptor Content in Aged Mice. Neurochemical Research 2019, 44, 787-795. [CrossRef]
- Badshah, H.; Ikram, M.; Ali, W.; Ahmad, S.; Hahm, J.R.; Kim, M.O. Caffeine May Abrogate LPS-Induced Oxidative Stress and Neuroinflammation by Regulating Nrf2/TLR4 in Adult Mouse Brains. Biomolecules 2019, 9, 719. [CrossRef]
- Duarte, J.M.N.; Skoug, C.; Silva, H.B.; Carvalho, R.A.; Gruetter, R.; Cunha, R.A. Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus. Frontiers in Neuroscience 2019, 12. [CrossRef]
- Machado, M.L.; Arantes, L.P.; da Silveira, T.L.; Zamberlan, D.C.; Cordeiro, L.M.; Obetine, F.B.B.; da Silva, A.F.; da Cruz, I.B.M.; Soares, F.A.A.; Oliveira, R.d.P. Ilex paraguariensis extract provides increased resistance against oxidative stress and protection against Amyloid beta-induced toxicity compared to caffeine in Caenorhabditis elegans. Nutritional Neuroscience 2021, 24, 697-709. [CrossRef]
- Gupta, S.; Dasmahapatra, A.K. Caffeine destabilizes preformed Aβ protofilaments: insights from all atom molecular dynamics simulations. Physical Chemistry Chemical Physics 2019, 21, 22067-22080. [CrossRef]
- Sharma, K.; Fallon, S.J.; Davis, T.; Ankrett, S.; Munro, G.; Christopher, G.; Coulthard, E. Caffeine and attentional control: improved and impaired performance in healthy older adults and Parkinson’s disease according to task demands. Psychopharmacology 2022, 239, 605-619. [CrossRef]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2018, 392, 1736-1788. [CrossRef]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regulatory toxicology and pharmacology : RTP 2017, 89, 165-185. [CrossRef]
- Zhou, A.; Hyppönen, E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: a prospective analysis of up to 347,077 individuals and 8368 cases. The American Journal of Clinical Nutrition 2019, 109, 509-516. [CrossRef]
- Zhou, A.; Hyppönen, E. Habitual coffee intake and plasma lipid profile: Evidence from UK Biobank. Clinical nutrition (Edinburgh, Scotland) 2021, 40, 4404-4413. [CrossRef]
- Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; et al. Daily Coffee Drinking Is Associated with Lower Risks of Cardiovascular and Total Mortality in a General Italian Population: Results from the Moli-sani Study. The Journal of Nutrition 2020, 151, 395-404. [CrossRef]
- Said, M.A.; Vegte, Y.J.v.d.; Verweij, N.; Harst, P.v.d. Associations of Observational and Genetically Determined Caffeine Intake With Coronary Artery Disease and Diabetes Mellitus. Journal of the American Heart Association 2020, 9, e016808, doi:doi:10.1161/JAHA.120.016808.
- Feng, J.; Wang, J.; Jose, M.; Seo, Y.; Feng, L.; Ge, S. Association between Caffeine Intake and All-Cause and Cause-Specific Mortality: An Analysis of the National Health and Nutrition Examination Survey (NHANES) 1999–2014 Database. Nursing Reports 2021, 11, 901-912. [CrossRef]
- Del Giorno, R.; Scanzio, S.; De Napoli, E.; Stefanelli, K.; Gabutti, S.; Troiani, C.; Gabutti, L. Habitual coffee and caffeinated beverages consumption is inversely associated with arterial stiffness and central and peripheral blood pressure. International Journal of Food Sciences and Nutrition 2022, 73, 106-115. [CrossRef]
- D’Elia, L.; La Fata, E.; Galletti, F.; Scalfi, L.; Strazzullo, P. Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. European journal of nutrition 2019, 58, 271-280. [CrossRef]
- Ngueta, G. Caffeine and caffeine metabolites in relation to hypertension in U.S. adults. European journal of clinical nutrition 2020, 74, 77-86. [CrossRef]
- Crooks, E.; Hansen, D.A.; Satterfield, B.C.; Layton, M.E.; Van Dongen, H.P.A. Cardiac autonomic activity during sleep deprivation with and without caffeine administration. Physiology & behavior 2019, 210, 112643. [CrossRef]
- Tripathi, M.; Singh, B.K.; Liehn, E.A.; Lim, S.Y.; Tikno, K.; Castano-Mayan, D.; Rattanasopa, C.; Nilcham, P.; Abdul Ghani, S.A.B.; Wu, Z.; et al. Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy 2022, 18, 2150-2160. [CrossRef]
- Subendran, S.; Wang, Y.-C.; Lu, Y.-H.; Chen, C.-Y. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics. Scientific Reports 2021, 11, 13801. [CrossRef]
- Ferreira, R.E.S.; Pacheco, R.L.; de Oliveira Cruz Latorraca, C.; Riera, R.; Eid, R.G.; Martimbianco, A.L.C. Effects of Caffeine Supplementation on Physical Performance of Soccer Players: Systematic Review and Meta-Analysis. Sports Health 2021, 13, 347-358. [CrossRef]
- Grgic, J. Exploring the minimum ergogenic dose of caffeine on resistance exercise performance: A meta-analytic approach. Nutrition (Burbank, Los Angeles County, Calif.) 2022, 97, 111604. [CrossRef]
- Martins, G.L.; Guilherme, J.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H., Jr. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Frontiers in sports and active living 2020, 2, 574854. [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Roelofs, E.J.; Hirsch, K.R.; Mock, M.G. Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science 2016, 16, 702-710. [CrossRef]
- Chieng, D.; Kistler, P.M. Coffee and tea on cardiovascular disease (CVD) prevention. Trends in cardiovascular medicine 2022, 32, 399-405. [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. British journal of sports medicine 2020, 54, 681-688. [CrossRef]
- Marcou, J.; Savva, R.-M. Does Caffeine Enhance Athletic Performance? Arab Journal of Nutrition and Exercise (AJNE) 2017, 1. [CrossRef]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sports medicine (Auckland, N.Z.) 2019, 49, 833-842. [CrossRef]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Medicine 2021, 51, 2281-2298. [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: caffeine and exercise performance. Journal of the International Society of Sports Nutrition 2021, 18, 1. [CrossRef]
- Gonçalves, L.S.; Painelli, V.S.; Yamaguchi, G.; Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of applied physiology (Bethesda, Md. : 1985) 2017, 123, 213-220. [CrossRef]
- Aboumanei, M.H.; Mahmoud, A.F. Design and development of a proniosomal transdermal drug delivery system of caffeine for management of migraine: In vitro characterization, 131I-radiolabeling and in vivo biodistribution studies. Process Biochemistry 2020, 97, 201-212. [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djaković, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food chemistry 2015, 167, 378-386. [CrossRef]
- Shaddel, R.; Akbari-Alavijeh, S.; Cacciotti, I.; Yousefi, S.; Tomas, M.; Capanoglu, E.; Tarhan, O.; Rashidinejad, A.; Rezaei, A.; Bhia, M.; et al. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications. Critical Reviews in Food Science and Nutrition 2022, 1-26. [CrossRef]
- Dali, P.; Shende, P. Self-Assembled Lipid Polymer Hybrid Nanoparticles Using Combinational Drugs for Migraine Via Intranasal Route. AAPS PharmSciTech 2022, 24, 20. [CrossRef]
- Khater, D.; Nsairat, H.; Odeh, F.; Saleh, M.; Jaber, A.; Alshaer, W.; Al Bawab, A.; Mubarak, M.S. Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. Cosmetics 2021, 8, 39. [CrossRef]
- Sakdiset, P.; Okada, A.; Todo, H.; Sugibayashi, K. Selection of phospholipids to design liposome preparations with high skin penetration-enhancing effects. Journal of Drug Delivery Science and Technology 2018, 44, 58-64. [CrossRef]
- Kalvodová, A.; Zbytovská, J. Lipid nanocapsules enhance the transdermal delivery of drugs regardless of their physico-chemical properties. International Journal of Pharmaceutics 2022, 628, 122264. [CrossRef]
- Abd, E.; Gomes, J.; Sales, C.C.; Yousef, S.; Forouz, F.; Telaprolu, K.C.; Roberts, M.S.; Grice, J.E.; Lopes, P.S.; Leite-Silva, V.R.; et al. Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test. International Journal of Cosmetic Science 2021, 43, 1-10. [CrossRef]
- Amasya, G.; Ozturk, C.; Aksu, B.; Tarimci, N. QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals. Journal of Drug Delivery Science and Technology 2021, 66, 102737. [CrossRef]
- Ramezani, V.; Honarvar, M.; Seyedabadi, M.; Karimollah, A.; Ranjbar, A.M.; Hashemi, M. Formulation and optimization of transfersome containing minoxidil and caffeine. Journal of Drug Delivery Science and Technology 2018, 44, 129-135. [CrossRef]
- Völker, J.M.; Koch, N.; Becker, M.; Klenk, A. Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review. Skin Pharmacology and Physiology 2020, 33, 153-169. [CrossRef]
- Liu, T.-I.; Tsai, Y.-C.; Wang, T.-M.; Chang, S.-H.; Yang, Y.-C.; Chen, H.-H.; Chiu, H.-C. Development of a nano-immunomodulator encapsulating R837 and caffeine for combined radio-/immunotherapy against orthotopic breast cancer. Progress in Natural Science: Materials International 2020, 30, 697-706. [CrossRef]
- Chen, P.-R.; Chuang, Y.-J. Study of Caffeine-Loaded Gelatin Nanoparticles for Treatment of Melanoma and Fibroblast Cells. 2020. [CrossRef]
- Gajare, S.P.; Bansode, P.A.; Patil, P.V.; Patil, A.D.; Pore, D.M.; Sonawane, K.D.; Dhanavade, M.J.; Khot, V.M.; Rashinkar, G.S. Anticancer, Antibacterial and Hyperthermia Studies of a Caffeine-Based N-Heterocyclic Carbene Silver Complex Anchored on Magnetic Nanoparticles. ChemistrySelect 2021, 6, 1958-1968. [CrossRef]
- Khan, F.; Park, S.-K.; Bamunuarachchi, N.I.; Oh, D.; Kim, Y.-M. Caffeine-loaded gold nanoparticles: antibiofilm and anti-persister activities against pathogenic bacteria. Applied Microbiology and Biotechnology 2021, 105, 3717-3731. [CrossRef]
- Hansen, S.E.; Marxen, E.; Janfelt, C.; Jacobsen, J. Buccal delivery of small molecules - Impact of levulinic acid, oleic acid, sodium dodecyl sulfate and hypotonicity on ex vivo permeability and spatial distribution in mucosa. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2018, 133, 250-257. [CrossRef]
- Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Follicular Penetration of Caffeine from Topically Applied Nanoemulsion Formulations Containing Penetration Enhancers: In vitro Human Skin Studies. Skin Pharmacol Physiol 2018, 31, 252-260. [CrossRef]
- Elmotasem, H.; Farag, H.K.; Salama, A.A.A. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula – Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. International Journal of Pharmaceutics 2018, 547, 83-96. [CrossRef]
- Calheiros, T.F.; Furtado, L.M.; Carmona-Ribeiro, A.M.; Ando, R.A.; Petri, D.F.S. Physicochemical and antifungal properties of waterborne polymer nanoparticles synthesized with caffeine. Colloid and Polymer Science 2020, 298, 341-353. [CrossRef]
- Barbasz, A.; Czyżowska, A.; Piergies, N.; Oćwieja, M. Design cytotoxicity: The effect of silver nanoparticles stabilized by selected antioxidants on melanoma cells. Journal of Applied Toxicology 2022, 42, 570-587. [CrossRef]
- Breuckmann, P.; Meinke, M.C.; Jaenicke, T.; Krutmann, J.; Rasulev, U.; Keck, C.M.; Müller, R.H.; Klein, A.L.; Lademann, J.; Patzelt, A. Influence of nanocrystal size on the in vivo absorption kinetics of caffeine after topical application. European Journal of Pharmaceutics and Biopharmaceutics 2021, 167, 57-64. [CrossRef]


| Sources | Caffeine Range (mg) | References |
|---|---|---|
| Coffee | ||
| Americano coffee | 91.7-213.3 | [40] |
| Decaffeinated coffee (500 mL) | 0.0-13.9 | [41] |
| Instant coffee | 8.7-120.0 | [29,39,40,42] |
| Plain coffee | 68.4-136.9 | [40] |
| Espresso | 66.0-276.0 | [29] |
| Tea | ||
| Black tea | 42.0 | [39] |
| Green tea | 18.0 | [39] |
| Yerba Mate | 40.0 | [39] |
| Soft drinks | ||
| Coca-Cola classic | 34.0 | [39] |
| Diet coke | 46.0 | [39] |
| Guarana | 47.0 | [39] |
| Mountain Dew | 54.0-90.0 | [39] |
| Pepsi-Cola | 38.0 | [39] |
| Soda | 0.0-69.0 | [39] |
| Sunkist | 19.0 | [39] |
| Energy drinks | ||
| Mountain Dew Amp | 142.0 | [39] |
| Full Throttle | 160.0 | [39] |
| Monster | 60.0-300.0 | [39] |
| Red Bull | 80.0-106.0 | [39] |
| Rockstar | 160.0-300.0 | [39] |
| Juice | ||
| Cranergy | 70.0-80.0 | [39] |
| Energy shots | ||
| Bang Shot | 300.0 | [39] |
| 5 Hour Energy | 200.0 | [39] |
| TruBrain Extra | 100.0 | [39] |
| Spike Energy Double Shot | 350.0 | [39] |
| Chocolate | ||
| Dark chocolate | 8.0 | [39] |
| Others | ||
| Water Joe | 70.0 | [39,43] |
| Target Cancer | Study Type | Model | Caffeine concentration | Result | Reference |
|---|---|---|---|---|---|
| Carcinoma squamous cells | In vitro | HN5 and KYSE30 cells | 0.5 - 70 mmol | Caffeine at the concentrations of 20, 50 and 70 mmol presented an inhibitory effect and decreased the proliferation rate of both cell lines. | [58] |
| Glioblastoma multiforme | In vitro | Human GBM cell line U87-MG | 1 mM | Pretreatment of cells with caffeine followed by combined treatment of Temozolomide + caffeine significantly decreased cell viability compared with the other groups. | [59] |
| Glioblastoma multiforme | In vitro | human GBM cell line U87MG and T98G 101 cells | 0.5- 10 | In both cell lines, caffeine at a concentration of 2.5 mM was able to reduce cellular viability, which was more pronounced under hypoxia. | [60] |
| Pancreatic ductal adenocarcinoma | In vitro | AsPC-1, BxPC-3, Capan-1, COLO-357, MiaPaCa-2, SU.86.86, PANC-1, and T3M4 pancreatic cancer cells | 100, 200 µM | Caffeine enhanced cell death induced by 5-Fluorouracil and Gemcitabine, and also decreased the IC50 of both chemotherapeutic agents. | [61] |
| Prostate cancer | In vitro | PC-3 cells | 0.5 mM | The caffeine affected the cell viability in a dose-dependent manner. Cell migration and invasion ability was more affected by the combination of atorvastatin and caffeine than by caffeine alone. The same was true for the formation of tumor spheres. | [62] |
| Melanoma | In vitro | Normal human melanocytes COLO829 and C32 cells | 0.01 - 1.0 μmol/mL | The results show the ability of caffeine to reduce the viability of COLO829 and C32 cells, by 5-35% and 1-16%, respectively. In addition, it also led to a decrease in thiol degradation and pro-apoptotic effect and did not affect normal melanocytes cells. | [63] |
| Breast cancer | In vitro | MDA-MB-231, MCF7 and MCF10A cells | 125 nM | After treatment of MDA-MB-231 and MCF7 with caffein, there was a change in metabolism towards respiratory-chain phosphorylation with low ratio of free to bound NADH. In combination with cisplatin, there was a decrease in viability, and preference of cancer cells over normal breast cells. | [64] |
| Colon and Breast cancer | In vitro | HCT116 and MCF7 cells | 0 to 60 mM | Apoptosis increased in both cell lines proliferative and senescent cells after treatment of the cells with caffeine at a concentration of 15 mM. | [53] |
| Lung cancer | In vitro | NCI-H23 and MLC15 cells | 0–500 µM | After treatment of NCl-H23 cells with 250 and 500 µM caffeine, the size of colonies decreased by 78.1% and 63.9%, respectively. In addition, caffeine at the same concentrations also induced cell arrest in the G0/G1 phase, reduced the S phase of the cell cycle, and suppressed cell invasion. | [65] |
| Melanoma | In vitro | B16F10 cells | 1–40 µM | Pre-treatment cells with caffeine enhanced the cytotoxic effects induced by dacarbazine. In addition, caffeine also increased oxidative-stress in a dose-dependent manner. | [66] |
| Breast | In vitro | MCF-7 and MDA-MB-231cells | 1-10 mM | In MTT assay, caffeine reduced the cell viability in concentrations greater than 2.5 mM for MCF7 and for 5 and 10 mM for MDA-MB-231 cell line. At the last-mentioned concentrations caffeine induces apoptosis and necrosis in both cell lines. | [54] |
| Endometrial cancer | In vitro | RL95-2, HEC-1-A and KLE cells | 0-40 mM | The therapeutic concentration of cisplatin decreased from 4.1 to 1.1 µM and from 163 to 6.6 µM, with caffeine concentrations of 1.1 and 5.3 Mm, respectively. | [67] |
| Glioma | RT2 cells-induced glioma in male Fischer 344 inbred rat | 30 mg/kg/day | The combination of caffeine with temozolomide reduced tumor wrinkles compared between the control group and the group with temozolomide alone. | [68] | |
| Hepatocellular carcinoma | In vitro and in vivo | SMMC-7721 and Hep3 cell lines and Male BALB/c nude mice | 0-32 mM (in vitro) 20mg/kg/day (in vivo) |
Caffeine decreased the viability of both cell lines and has a synergistic effect with 5-fluorouracil. In addition, tumor growth was suppressed, and tumor weight was reduced in mice treated with caffeine alone or in combination with 5-fluorouracil. | [69] |
| Adult pleomorphic rhabdomyosarcoma | In vitro and in vivo | RMS cells, Athymic nu/nu nude mice and cells removed to the tumor tissue | 0.5 and 1 mM (in vitro) 100 mg/kg per day (in vivo) |
Caffeine has been shown to enhance the antiproliferative effects of valproic acid. In the in vivo studies, the group treated with caffeine and valproic acid showed a reduction in tumor volume compared to the control group. This was also confirmed in the group treated with Salmonella typhimurium A1 receptor in combination with caffeine and valproic acid. | [70] |
| Osteossarcoma, fibrosarcoma | In vitro and in vivo | HOS, HT1080 and LM8 cells and athymic nude mice | 0.5 mM (in vitro) 100 mg/kg (in vivo) |
The combination of cisplatin and caffeine decreased ell viability compared with cisplatin alone. In vivo, after implantation of LM8 and HT1080 cells the combination of cisplatin + caffeine decreased tumor volume and weight. | [71] |
| Melanoma | In vivo | Albino mice and C57BL/6J mice | 0.08% w/v, daily | The authors demonstrated that in the carcinogen-induced tumor model, the groups treated with caffeine alone decreased the tumor growth rate from 5.3 mm2/day to 2.6 mm2/day, in combination with anti-PD1 the decrease was more pronounced (0.9 mm2/day). | [72] |
| Fibrosarcoma | In vivo | Adult albino mice | 0.02%, 0.04%, and 0.08% w/v | In caffeine-treated mice, tumor incidence, size and growth rate decreased with the increasing concentration. In addition, caffeine-treated mice had a higher percentage of cytotoxic T cells and higher TNF-α and IFN-γ levels. | [55] |
| Synovial sarcoma | In vivo | Athymic nu/nu nude mice | 100 mg/kg/day | The combination of oral recombinant methioninase and caffeine reduced tumor volume. | [56] |
| Osteosarcoma | In vivo | Athymic nu/nu nude mice | 100 kg/kg/day | After treatment the osteosarcoma model (patient-derived orthotopic xenograft) with cisplatinum + oral recombinant methioninase + caffeine, the decreased was most smarked compared with the other groups. | [73] |
| Fibrosarcoma | In vivo | Adult Syrian golden hamsters | 100 mg/kg | Administration of metformin (500 mg/kg) and caffeine resulted in inhibition of fibrosarcoma growth. | [74] |
| Colorectal cancer | In vivo and in silico | Swiss Webster mice | 50 mg/kg/day | Mice treated with caffeine alone or in combination with chlorogenic acid decreased the expression of IL-6, IL-17 and TNF-α. | [75] |
| Renal cell carcinoma | In vitro and in vivo and in silico | ACHN and 786-O cells and BALB/c nude mice | 0–3200 μg/mL | The molecular docking studies demonstrated that caffeine was able to bind to G6PDH at the NADP+ binding site, which is a biomarker and potential therapeutic target for renal cell carcinoma. In addition, caffeine was able to decrease the viability and proliferation of both cell lines and in the in vivo studies. | [57] |
| Target/Goal | Study Type | Model | Caffeine Concentration | Result | Reference | |
|---|---|---|---|---|---|---|
| Anti-inflammatory effect and immunomodulation | In vitro | Human peripheral blood mononuclear cells | 0.019 -1.16 mM | Caffeine reduced the levels of several cytokines (IL-8, MIP-1β, IL-6, IFN-γ, GM-CSF, TNF-α, IL-2, IL-4, MCP-1, and IL-10. It also inhibited STAT1 signaling. | [92] | |
| Immunomodulation | In vitro | Monocytes and macrophage | 300–1000 µM | Caffeine suppressed TNF−α in both LPS-activated macrophage subtypes, altered adenosine receptor expression, Akt/AMPK/mTOR signaling and inhibited STAT/IL-10 signaling in macrophage colony-stimulating factor. | [105] | |
| Immunomodulation | In vitro | Mesenchymal stem cells and neutrophiles | 0.1-1 mM | Caffeine-treated mesenchymal stem cells produced fewer reactive oxygen species and increased phagocytosis of neutrophils co-cultured with mesenchymal stem cells. | [106] | |
| Immunomodulation | In vitro | Mesenchymal stem cells and neutrophiles | 0.1-1 mM | Caffeine treatment increased the viability of co-cultured neutrophils. | [107] | |
| Bronchopulmonary dysplasia - NLRP3 inflammasome | In vitro | THP-1-derived macrophages | 100-800 μM | There was a decreased in NLRP3 inflammasome activation, ASC speck formation, and caspase 1 cleavage. In addition, IL-1β and IL-18 decreased secretion, and phosphorylation of MAPK and NF-kB pathway members | [108] | |
| Melanoma |
In vitro in silico |
Mel1 and Mel3 cells | 1 and 2 mM | After caffeine treatment, there was a decrease in the levels of IL-1β, IP-10, macrophage inflammatory protein 1-α, and CCL4. On the other hand, the expression of regulated and normal T cells decreased in Mel3 cell line. | [109] | |
| Rheumatoid arthritis | In vitro and in vivo | Mesenchymal stem cells and Wistar rats | 0-1 mM | Caffeine at a concentration of 0.5 Mm can promote lower levels of cytokines, such as IFN-γ, IL-6, and IL-1β and higher levels of IDO and TGF-β. In addition, cells treated with caffeine diminish the severity of rheumatoid arthritis and cause a decrease in serum levels of C-reactive protein, nitric oxide, myeloperoxidase, and TNF-α. | [87] | |
| Infection | In vitro and in vivo | Peritoneal macrophages and Swiss mice | 0.05- 5 μg/mL (in vitro) 0.05-5 mg/Kg (in vivo) |
In mice, the leucocyte infiltration of the peritoneal cavity decreased after caffeine treatment. In addition, mRNA expressions of IL-1β, IL-6, and the enzyme inducible nitric oxide synthase were decreased, whereas IL-10 was increased. | [110] | |
| Immunological and metabolic anomalies in obesity | In vitro and in vivo | Male Sprague-Dawley rat, RAW 264.7 macrophage and HepG2 cells | 50, 100, 150Μm (in vitro) 20mg/kg/day (in vivo) | In caffeine-treated mice, the profiles of TNF−α, MCP-1, IL-6, intercellular adhesion molecule, and nitrite were suppressed. In addition, live white adipose tissue and muscle macrophages and their cytokine levels also decreased. | [111] | |
| Depression | In vitro and in vivo | CBA × C57BL/6 F1 mice and syngeneic splenocytes | 100 μg/15 × 106 cells | Immune cells treated with caffeine and transplanted into depressive-like mice resulted in an increase in neuronal density and anti-inflammatory cytokines (IL-10 and IL-4) and a decrease of proinflammatory cytokine (IL-1β, INF-γ, and TNF-α). | [112] | |
| Autoimmune Encephalomyelitis | In vitro and in vivo | Primary microglia and BV2 cells C57BL/6 mice were immunized to induce autoimmune encephalomyelitis |
2mM (in vitro) 10-30 mg/kg/day (in vivo) |
Caffeine decreased clinical score, inflammatory cell infiltration degree of the demyelination, and microglia stimulation in mice. In addition, it increased LC3-II/LC3-I levels and decreased NLRP3 and P62 levels. | [86] | |
| Neurotoxicity - antioxidant and anti-inflammatory | In vivo | Albino rats | 20 mg/kg | Reduced oxidative stress and restored TNF-α levels in cerebral tissues. | [113] | |
| Neuroinflammation | In vivo | Sprague-Dawley rats | 60 mg/kg/day | Caffeine/modafinil increased levels of anti-inflammatory (IL-4 and IL-10) and decreased proinflammatory (TNF-α, IL-1β) cytokines in the hippocampus. Decreased the microglial immunoreactivity and improved inflammatory response and anxious behavior. | [114] | |
| Hepatic fibrosis - antioxidant and anti-inflammatory | In vivo | Hepatic fibrosis Sprague-Dawley rats | 50 mg/kg | Decreased fibrosis and necro-inflammation; decreased LPAR1, TGF-β1, CTGF, α-SMA and LPAR1 expression; improved liver function | [115] | |
| Oxygen-Induced Inflammatory Lung Injury | In vivo | Neonatal rats | 10 mg/kg | Under hyperoxia, caffeine decreased pro-inflammatory mediators (TNF-α, IL-1α, IL-1β, IFN-γ) and NF-kB, and decreased infiltrating cells in the lung. Opposite effects were observed in normotoxic conditions. | [104] | |
| Inflammation and adenosinergic system in cerebellum | In vivo | Ethanol-induced inflammation in wistar and UChB rats | 3 g caffeine/L of ethanol | Caffeine modulated A1 and A2a receptors and attenuated the inflammation, demonstrating a neuroprotective role. | [116] | |
| Choroidal neovascularization - anti-inflammatory and na |
In vitro in vivo |
Laser photocoagulation mice model | 200, 400 uM (in vitro); 10 and 20 mg/kg (in vivo) |
Significantly reduced the migration of retinal and choroidal endothelial cells (in vitro); Decreased choroidal neovascularization and inflammatory (mononuclear phagocytes) cells’ recruitment to the lesion area. | [93] | |
| Neurotoxicity | In vivo | Tramadol-induced damage in cerebelum rat model | 37.5 mg/kg | Up-regulated autophagy-related genes; reduced the expression of inflammatory and apoptosis markers, demonstrating neuroprotective effects in the cerebellum. | [117] | |
| Retinal inflammation |
In vitro in vivo |
Ischemia reperfusion (I/R) injury mice model | 1 - 100 uM (in vitro); 10uL at 1,9% (in vivo) | Caffeine reduced the secretion of IL-1β, IL-6, and TNF-α and restored the integrity of retinal cell monolayer (in vitro). Instilled caffeine reduced IL-6 mRNA levels and maintained BDNF physiological levels in the retina | [96] | |
| Cognitive impairment |
In vivo | BALB/c mice | 0.05 and 0.1 mg | Intranasal administration of caffeine improved the behavior outcomes of ischemic mice and reduced the expression of proinflammatory biomarkers (TNF-α, IL-6) and improved anti-inflammatory cytokines' (IL-10). | [118] | |
| Hydrocephalus | In vivo | Kaolin-induced hydrocephalus mice | 50 mg/kg by gavage (dams) | Administration of caffeine to dams reduced cell death, and increased the neurons dendritic arborization in the sensorimotor cortex and striatum of the mice neonates and improved hydrocephalic deficits and behavioral development | [119] | |
| Anti-inflammatory effect | In vivo | Albino rats | 100mg/kg | Administration of 100 mg/kg/day alone or in combination with nicotine decreased the number of CD68+ve macrophages and the density of CD68 immunoexpression. In addition, combined administration of caffeine and nicotine decreased apoptosis compared with nicotine alone. | [120] | |
| Immunomodulation and anti-inflammatory effect | In vivo | Nile tilapia | Diet containing 5 and 8% | Diets containing 5% and 8% caffeine prevented alterations caused by hypoxia, such as ATP hydrolysis and consequent accumulation in the extracellular environment. | [121] | |
| Dental pain | Clinical Trial | Patients with acute postoperative dental pain | 100 mg | Caffeine improved the effect of ibuprofen in the treatment of moderate postoperative dental pain. | [122] |
| Disease | Study Type | Model | Caffeine concentration | Result | Reference |
|---|---|---|---|---|---|
| Parkinson’s Disease | In vitro | Transgenic Caenorhabditis elegans | 10 mM | Caffeine was able to prevent neuronal cell loss in 96% of dopaminergic neurons. | [135] |
| Alzheimer’s Disease | In vitro | SHSY5Y cells | 0.6 and 1 mM | Both concentrations were able to reduce beta-amyloid neurotoxicity. | [141] |
| Alzheimer’s Disease | In vitro | SH-SY5Y wildtype and N2a cells | 100 µM | In the presence of caffeine, the level of ADAM10 protein increased to 138.5% ± 9.2%, and the levels of APP protein level and ROS decrease to 85.4% ± 3.6% and 48.8% ± 3.2%, respectively. | [142] |
| Alzheimer’s Disease | In vitro | HEK293 cells | 0.1-10 mM | Caffeine induces conformational chances on muscle nicotinic acetylcholine receptors, which are molecular targets of Alzheimer’s disease. | [143] |
| Parkinson’s Disease | In vitro and in vivo | Swiss mice and Wistar rats | 31.2 mg/kg | Caffeine administration reduced the catalepsy index and increased the number of ipsilateral rotations. | [144] |
| Cd-induced neurodegeneration | In vitro and in vivo | HT-22 and BV-2 cells and Wild-type C57BL/6N male mice | 30 mg/kg/day | Caffeine reduced ROS, lipid peroxidation and 8-dihydro-8-oxoguanine levels. It also attenuated neuronal loss, synaptic dysfunction, and learning and cognitive deficits. | [145] |
| Hypoxia Ischemia | In vivo | Spague-Dawley mice | 0.3 g/L | Pretreatments with caffeine reduced the brain infarct after hypoxia ischemia and also restored the brain activity. | [146] |
| Acetaminophen induced neurotoxicity | In vivo | Swiss albino mice | 20 mg/kg | Treatment with Caffeine and acetaminophen reduced the formation of ROS, compared with the acetaminophen group. In addition, the survival time of caffeine- treated mice increased 33%. | [147] |
| Parkinson’s Disease | In vivo | C57BL/6 mice with motor behavioral deficit induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine | 20 mg/kg | Caffeine improved behavioral and neurotransmitter recovery against the induced toxicity. It was also able to restore antioxidant levels and suppress neuroinflammation. | [148] |
| Hypoxic-ischemic | In vivo | Wild type C57/bl6 specific pathogen-free mice | 5 mg/kg | Caffeine administration after hypoxia ischemic brain injury reduces the lesion in the grey and white matter, and the number of amoeboid microglia and apoptotic cells. The expression of pro-inflammatory cytokines also decreased. | [149] |
| Apnea of prematurity | In vivo | infection-free pregnant Sprague Dawley rats | 100 mg/kg | Caffeine administration in normoxia, reduced the oxidative stress, hypermyelination and increase golgi bodies. | [150] |
| Parkinson’s Disease | In vivo | C57BL/6 male mice | 1 g/L | Caffeine protected against synucleinpathy by modulating α-syn-induced apoptosis, microglial and astrocytic activation in the striatum. | [139] |
| N/D | In vivo | male Swiss mice | 0.3 g/L | The amount of A2A receptors was decreased in hippocampus of mice that consumed caffeine. The aged mice treated with caffeine presented more pyknotic neurons in the hippocampus and reduced damage. | [151] |
| LPS-Induced Oxidative Stress and Neuroinflammation | In vivo | C57BL/6N male mice | 3 mg/kg/day | The LPS-injected group had enhanced expression of Bax and caspase-3. On the other hand, these markers were reduced in the group treated with caffeine, this treatment also caused a restoration of the synaptic markers. | [152] |
| Diabetes | In vivo | Male GK and Wistar-Hannover-Galas rats | 1 g/L | Caffeine prevented the GFAP, vimentin and SNAP25 alterations caused by diabetes, and also improved the memory deficits. | [153] |
| N/D | In vivo | C57bl\6j mice and A2AR knockout mice | 50 μM | Caffeine increased synaptic transmission by 40%, decreased facilitation of paired-pulse and decreased the amplitude of long-term potentiation by 35%. | [15] |
| Alzheimer Disease | In vivo | Wild-type N2 and CL2006 worms | 200 and 400 μM | Treatment prevented amyloid beta-peptide paralysis, decreased acetylcholinesterase activity, and decreased amyloid beta-peptides mRNA levels. | [154] |
| Parkinson’s disease | In vivo | C57BL/6J mice | 50 mg/kg/day | Co-administration of caffeine and eicosanoyl-5-hydroxytryptamide resulted in decreased accumulation of phosphorylated α-synuclein, maintenance of neuronal integrity and function, reduction of neuroinflammation, and improvement of behavioral performance. | [140] |
| Parkinson’s Disease | In silico | Molecular Docking Simulations | N/A | Caffeine was able to bind at position 28th in both wild-type and mutant parkin protein. | [136] |
| Alzheimer’s Disease | In silico | Molecular Docking Simulations | N/A | The results revealed that in the presence of caffeine, the distances between the inter-residual increased, leading to the breakdown of hydrophobic contacts, and ultimately destabilizing the Aβ protofibrils. | [155] |
| Parkinson’s Disease | Clinical trial | Parkinson’s Disease Patients | 100 mg | Caffeine treatment reduced the number of errors in patient and controls on the Stroop and Choice reaction time and enhanced dual item accuracy on the rapid visual serial presentation task. | [156] |
| Study Type | Model | Result | Reference |
|---|---|---|---|
| Systematic review | Review of prospective studies | Regular and moderate coffee consumption (1-2 cups/day) is not associated with hypertension risk. Higher coffee consumption has a protective effect. | [165] |
| Prospective | 347,077 volunteers (37–73 years old, UK Biobank) | Coffee consumption may lead to a slight increase in CVD risk. | [159] |
| Prospective | 2278 volunteers (18-80 years old) | Caffeine metabolites are responsible for lowering the risk of hypertension. | [166] |
| Prospective | 20,487 (35-94 years old) | Coffee moderate consumption (3–4 cups/day) has been associated with a lower CVD mortality. | [161] |
| Prospective | >500 000 individuals (40-69 years old) | The consumption of 2-3 cups of coffee per day (121-182 mg caffeine/day) was associated with a low risk of coronary artery disease. | [162] |
| Prospective | 23,878 individuals (> 20 years old) | Higher caffeine intake (>100 mg/day) was associated with lower CVD mortality. | [163] |
| Prospective | 362,571 individuals (37-73 years old, UK Biobank) | High coffee consumption (> 6 cups/day) increases levels of low-density-lipoproteins cholesterol, total cholesterol and apolipoprotein B, thereby increasing the risk for CVD. | [160] |
| Prospective | 1095 individuals (mean age 53±14 years old) | Moderate coffee consumption (> 3 cups/day) reduces CVD risk factors such as arterial stiffness and high blood pressure | [164] |
| Randomized Controlled Trial | 12 volunteers (19-39 years old) | Administration of caffeine (200 mg, 12h intervals) during sleep deprivation reduced HR and increased HF-HRV. The concentration-effect was non-linear. No significant interaction between sleep deprivation and caffeine intake | [167] |
|
In vitro in vivo |
Primary human and mouse aortic VSMCs, immortalized mouse aortic VSMCs; restenosis mice model (apoe−/−C57BL/6 J) | Caffeine induced autophagy by inhibiting mTOR signaling; decreased proliferation of VMCs by inhibiting WNT signaling; decreased vascular restenosis | [168] |
| In vivo | Zebrafish | Both concentrations tested caused a similar decrease of the HR. | [169] |
| Nanosystem | Method | Composition | Application | Model | Result | Reference |
|---|---|---|---|---|---|---|
| Lipid-based nanosystems | ||||||
| Liposome | Thin-film hydration | Lecithin, polysorbate 80, polysorbate 20 | Alopecia | Wistar rats | Improves skin delivery, weight, and hair length. | [190] |
| Liposomes | Thin film hydration | Phospholipid, cholesterol | Skin drug delivery | abdominal skin of WBN/ILA-Ht hairless rats | DPPG liposomes enhanced skin penetration by disrupting the lipidic barrier of stratum corneum. | [186] |
| Liposomes | High-pressure homogenization | Phosphatidylcholine, propylene glycol | Skin drug delivery | full-thickness abdominal human skin | Propylene glycol increased liposome deformability and improved skin permeation of caffeine. | [188] |
| Lipidic nanosystem | High-pressure homogenization | Trilaurin, oleic acid, pluronic F68, imiquimod | Cancer | orthotopic breast cancer mice model | Caffeine slightly improved antitumor activity. | [192] |
| Lipid nanocapsules | Phase inversion temperature | Miglyol 812 N, Kolliphor HS 15, Phospholipon 90G | Skin drug delivery | porcine skin | Caffeine was not successfully encapsulated. Nanocapsules improved the transdermal permeation of caffeine. | [187] |
| Semi-solid nanostructured lipid carriers | Two-stage homogenization method, high shear homogenization, ultrasonication | Compritol® 888 ATO and Precirol® ATO 5, argan oil, Poloxamer 407 | Cosmetics, skin drug delivery | Wistar rat full-thickness dorsal skin | NLCs' exhibited a high capacity for deposition and permeation through the skin. | [189] |
| Proniosomes | Coacervation phase separation | Cholesterol, span 60, lecithin | Brain delivery - migraine | Swiss albino mices' abdominal skin and albino rabbits' ear | Increased caffeine permeation through the skin and caffeine levels in blood and brain compared to orally administered caffeine. No evidence of skin irritation. | [181] |
| Nanoemulsion | Low energy emulsification | Dicaprylyl ether, ethylhexyl isononanoate, potassium lauroyl wheat amino acids, palm glycerides and capryloyl glycine | Cosmetics, skin drug delivery | Abdominal human epidermis | Did not improve skin permeation of caffeine compared to emulsion. | [196] |
| Nanoemulsion | Low energy emulsification | Volpo-N10, oleic acid or eucaliptol | Skin drug delivery | human full-thickness skin | Increased permeation and retention of caffeine in hair follicles and skin. | [197] |
| Pickering emulsion stabilized by magnesium oxide NPs | High shear homogenization | Wheat german oil, magnesium oxide NPs | Oral drug delivery - hepatoprotective | Wistar rats intoxicated with CCl4 | Decreased proliferation of cancer cells, moderate reduction of oxidative stress and inflammatory markers, similar to caffeine solution. Increased catalase levels compared to caffeine. | [198] |
| Polymer-based nanosystems | ||||||
| Polymeric nanoparticles | Emulsion polimerization | Methyl methacrylate, CTAB or sodium dodecyl sulfate | antifungal | C. albicans | CTAB-caffeine nanoparticles inhibited the growth of C. albicans. | [199] |
| Polymeric nanoparticles | Desolvation | Gelatin | cancer | B16F10, L929 cell lines | Inhibited the proliferation of murine melanoma cells (B16F10) and induced apoptosis without causing cytotoxic effects on normal fibroblast cells (L929). | [193] |
| Metal-based nanosystems | ||||||
| Silver complexes anchored to magnetic NPs | Covalent conjugation and complexation | Chloro-functionalized Fe3O4 magnetic NPs, caffeine N-heterocyclic carbene-silver complex | cancer | HepG2, WRL-68 cell lines | Enhanced cytotoxic effects against HepG2 cells and antibacterial activity against E. coli, S. aureus and B. cereus. Hyperthermia studies showed that the nanosystems reached a temperature of 47 °C, which is suitable for anticancer applications | [194] |
| Silver nanoparticles | Chemical reduction | Silver nitrate, galic acid, (-)-epicatechin-3-gallate or caffeine | cancer | B16-F0, COLO 679 cell lines | EGCG- and caffeine-stabilized AgNPs were the most and less effective against the tested cancer cell lines. | [200] |
| Gold nanoparticles | Chemical reduction | Gold (III) chloride trihydrate | antibacterial | E. Coli, P. aeruginosa, S. aureus, L. monocytogenes | Inhibition of biofilm formation and removal of mature biofilms. Antibacterial activity against resistant pathogenic bacteria. | [195] |
| Crystal-based nanosystems | ||||||
| Nanocrystals | Pearl-milling | Carbopol® 981, propylene glycol | skin drug delivery | Human volunteers, arm skin | The nanocrystals with a size of 694 nm showed a delayed but higher and longer delivery of caffeine, being detected in serum for at least 5 days | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
