Submitted:
11 May 2023
Posted:
12 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Preparation of Grape Pomace Meal and Nutritional Components
2.2. Antioxidant Capacity, Phenolic Compounds Content and Chemical Characterization of GPM
2.2.1. Obtaining extracts and measurement of phenolic content in GPM
2.3. Animal Feeding Trial
2.3.1. Animals and Treatments
2.4. Environmental Conditions and Physiological Variables
2.5. Slaughter and Carcass Traits
2.6. Blood Metabolites
2.7. Statistical Analysis
3. Results
3.1. Quantification of Phenolic Compounds and Capacity Antioxidant of GPM
3.2. Physiologycal Variables
3.4. Productive Performance of Pigs and Carcass Quality
3.5. Relative organ weight of finishing pigs.
3.6. Hormonal levels, hematological and biochemical parameters of finishing pigs.
4. Discussion
4.1. Physiological Variables
4.2. Productive Performance and Carcass Traits
4.3. Relative Organ Weights of Finishing Pigs
4.4. Hematological and Biochemical Variables and Hormone Levels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayorga, E.J.; Kvidera, S.K.; A Horst, E.; Al-Qaisi, M.; McCarthy, C.S.; A Abeyta, M.; Lei, S.; Elsasser, T.H.; Kahl, S.; Kiros, T.G.; et al. Effects of dietary live yeast supplementation on growth performance and biomarkers of metabolism and inflammation in heat-stressed and nutrient-restricted pigs. Transl. Anim. Sci. 2021, 5, txab072. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Front. 2018, 9, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Santos Araújo, T.; Prezotto, C.F.; Lucci, J.R.; Nunes, M.B.; Peconick, A.P.; Vicente De Sousa, R. Metabolic Changes in Swine Caused by β-Adrenergic Receptors Agonists: A Ractopamine Review. Revista Eletrônica de Pesquisa Animal 2014, 02, 62–77. [Google Scholar]
- Niño, A.M.; Granja, R.H.; Wanschel, A.C.; Salerno, A.G. The challenges of ractopamine use in meat production for export to European Union and Russia. Food Control. 2017, 72, 289–292. [Google Scholar] [CrossRef]
- Gheisar, M.M.; Kim, I.H. Phytobiotics in poultry and swine nutrition – a review. Ital. J. Anim. Sci. 2017, 17, 92–99. [Google Scholar] [CrossRef]
- Valenzuela-Grijalva, N.; Jiménez-Estrada, I.; Mariscal-Tovar, S.; López-García, K.; Pinelli-Saavedra, A.; Peña-Ramos, E.A.; Muhlia-Almazán, A.; Zamorano-García, L.; Valenzuela-Melendres, M.; González-Ríos, H. Effects of Ferulic Acid Supplementation on Growth Performance, Carcass Traits and Histochemical Characteristics of Muscle Fibers in Finishing Pigs. Animals 2021, 11, 2455. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Jia, G.; Zhao, H.; Liu, G.; Huang, Z. Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food Funct. 2018, 10, 259–265. [Google Scholar] [CrossRef]
- Li, Y.J.; Li, L.Y.; Li, J.L.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of Dietary Supplementation with Ferulic Acid or Vitamin E Individually or in Combination on Meat Quality and Antioxidant Capacity of Finishing Pigs. Asian-Australasian J. Anim. Sci. 2015, 28, 374–381. [Google Scholar] [CrossRef]
- Chikazawa, M.; Sato, R. Identification of a Novel Function of Resveratrol and Genistein as a Regulator of β2-Adrenergic Receptor Expression in Skeletal Muscle Cells and Characterization of Promoter Elements Required for Promoter Activation. Mol. Nutr. Food Res. 2018, 62, e1800530. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef]
- Sonam, K.S.; Guleria, S. Synergistic Antioxidant Activity of Natural Products. Ann Pharmacol Pharm 2017, 2, 1–6. [Google Scholar]
- Taranu, I.; Habeanu, M.; Gras, M.A.; Pistol, G.C.; Lefter, N.; Palade, M.; Ropota, M.; Chedea, V.S.; Marin, D.E. Assessment of the effect of grape seed cake inclusion in the diet of healthy fattening-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2017, 102, E30–E42. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: a review. J. Anim. Sci. Biotechnol. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists; 17th ed. 2000.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, C.S.; Martínez-Téllez, M.Á.; de la Rocha, R.V.; Sañudo-Barajas, A.J.A.; Quintana-Obregón, E.A. Characterization of Cabernet, Grenache, and Syrah Grape Marc Powders Produced in Northwestern Mexico. Emir J Food Agric 2021, 33, 846–851. [Google Scholar] [CrossRef]
- Park, Y.K.; Ikegaki, M.; Abreu, J.A. da S. ; Alcici, N.M.F. Estudo Da Preparação Dos Extratos de Própolis e Suas Aplicações. Food Science and Technology 1998, 18, 313–318. [Google Scholar]
- Cao, M.; Zong, C.; Zhuang, Y.; Teng, G.; Zhou, S.; Yang, T. Modeling of Heat Stress in Sows Part 2: Comparison of Various Thermal Comfort Indices. Animals 2021, 11, 1498. [Google Scholar] [CrossRef]
- Revised, S. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 28 ( 2015 ) Documentation and User Guide. 2016, 28.
- Oliveira, A.C.d.F.d.; Vanelli, K.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Veter- Res. Commun. 2018, 43, 37–43. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef]
- Nicolás-López, P.; Macías-Cruz, U.; Avendaño-Reyes, L.; Valadez-García, K.M.; Mellado, M.; Meza-Herrera, C.A.; Díaz-Molina, R.; Castañeda, V.J.; Vicente-Pérez, R.; Luna-Palomera, C. Ferulic acid supplementation for 40 days in hair ewe lambs experiencing seasonal heat stress: short-term effects on physiological responses, growth, metabolism, and hematological profile. Environ. Sci. Pollut. Res. 2022, 30, 11562–11571. [Google Scholar] [CrossRef]
- Le, H.H.; Shakeri, M.; Suleria, H.A.R.; Zhao, W.; McQuade, R.M.; Phillips, D.J.; Vidacs, E.; Furness, J.B.; Dunshea, F.R.; Artuso-Ponte, V.; et al. Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs. Antioxidants 2020, 9, 1024. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Li, J.; Wang, C.; Shan, A. Biological function of resveratrol and its application in animal production: a review. J. Anim. Sci. Biotechnol. 2023, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, L.; Zhao, X.; Chen, X.; Wang, L.; Geng, Z. Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. J. Sci. Food Agric. 2017, 98, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.T.T.; Aarnink, A.J.A.; Verstegen, M.W.A.; Gerrits, W.J.J.; Heetkamp, M.J.W.; Kemp, B.; Canh, T.T. Effects of increasing temperatures on physiological changes in pigs at different relative humidities1. J. Anim. Sci. 2005, 83, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Valadez-García, K.M.; Avendaño-Reyes, L.; Díaz-Molina, R.; Mellado, M.; Meza-Herrera, C.A.; Correa-Calderón, A.; Macías-Cruz, U. Free ferulic acid supplementation of heat-stressed hair ewe lambs: Oxidative status, feedlot performance, carcass traits and meat quality. Meat Sci. 2020, 173, 108395. [Google Scholar] [CrossRef] [PubMed]
- Horvath, C.; Wolfrum, C. Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proc. Nutr. Soc. 2020, 79, 338–356. [Google Scholar] [CrossRef] [PubMed]
- Bogolyubov, N.V.; Chabaev, M.G.; Fomichev, Y.P.; Tsis, E.Y.; Semenova, A.A.; Nekrasov, R.V. Ways to reduce adverse effects of stress in pigs using nutritional factors. Ukr. J. Ecol. 2019, 9, 239–245. [Google Scholar] [CrossRef]
- Lavelli, V.G.F.P.D. Application of Compounds from Grape Processing By-Products: Formulation of Dietary Fiber and Encapsulated Bioactive Compounds.; Galanakis, C.M., Ed.; Academic Press: Gaithesburg: USA, 2021. [Google Scholar]
- Zou, Y.; Xiang, Q.; Wang, J.; Wei, H.; Peng, J. Effects of oregano essential oil or quercetin supplementation on body weight loss, carcass characteristics, meat quality and antioxidant status in finishing pigs under transport stress. Livest. Sci. 2016, 192, 33–38. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A. .; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić,.L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2020, 138, 110739. [Google Scholar] [CrossRef]
- Jiang, D.; Peterson, D.G. Role of hydroxycinnamic acids in food flavor: a brief overview. Phytochem. Rev. 2009, 9, 187–193. [Google Scholar] [CrossRef]
- Solà-Oriol, D.; Roura, E.; Torrallardona, D. Feed preference in pigs: Effect of selected protein, fat, and fiber sources at different inclusion rates1. J. Anim. Sci. 2011, 89, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Mekinić, I.G. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Moset, V.; Piquer, O.; Cervera, C.; Fernández, C.J.; Hernández, P.; Cerisuelo, A. Ensiled citrus pulp as a by-product feedstuff for finishing pigs: nutritional value and effects on intestinal microflora and carcass quality. Span. J. Agric. Res. 2015, 13, e0607. [Google Scholar] [CrossRef]
- Biondi, L.; Luciano, G.; Cutello, D.; Natalello, A.; Mattioli, S.; Priolo, A.; Lanza, M.; Morbidini, L.; Gallo, A.; Valenti, B. Meat quality from pigs fed tomato processing waste. Meat Sci. 2019, 159, 107940. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; He, W.; Su, G.; Xu, X.; Shan, A. The Effect of Increasing Neutral Detergent Fiber Level through Different Fiber Feed Ingredients throughout the Gestation of Sows. Animals 2021, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Herrera, H. 2011.
- Cai, W.; Casey, D.S.; Dekkers, J.C.M. Selection response and genetic parameters for residual feed intake in Yorkshire swine1. J. Anim. Sci. 2008, 86, 287–298. [Google Scholar] [CrossRef]
- Gilbert, H.; Billon, Y.; Brossard, L.; Faure, J.; Gatellier, P.; Gondret, F.; Labussière, E.; Lebret, B.; Lefaucheur, L.; Le Floch, N.; et al. Review: divergent selection for residual feed intake in the growing pig. Animal 2017, 11, 1427–1439. [Google Scholar] [CrossRef]
- Zebua, C.K.N.; Muladno, M.; Siagian, P.H. Comparative performance of Landrace, Yorkshire and Duroc breeds of swine. J. Indones. Trop. Anim. Agric. 2017, 42, 147–152. [Google Scholar] [CrossRef]
- Gorewit, R. Pituitary and Thyroid Hormone Responses of Heifers After Ferulic Acid Administration. J. Dairy Sci. 1983, 66, 624–629. [Google Scholar] [CrossRef]
- Chen, X.; Liang, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G. Quercetin regulates skeletal muscle fiber type switching via adiponectin signaling. Food Funct. 2021, 12, 2693–2702. [Google Scholar] [CrossRef]
- Jiang, Q.; Cheng, X.; Cui, Y.; Xia, Q.; Yan, X.; Zhang, M.; Lan, G.; Liu, J.; Shan, T.; Huang, Y. Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1α pathway. Food Funct. 2019, 10, 3334–3343. [Google Scholar] [CrossRef] [PubMed]
- Avalos, L.G.; Lemus-Flores, C.; Bugarín-Prado, J.O.; Grageola-Núñez, F.; Ayala-Valdovinos, M.A.; Duifhuis-Rivera, T.; Moo-Huchin, V.M.; Dzib-Cauich, D. Efecto de dietas con harina de aguacate sobre lípidos en músculo, antioxidantes y expresión de genes en cerdos finalizados. Rev. Bio Cienc. 2020, 7. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Guo, Q.; Li, J.; He, S.; Yin, Y. Dietary Supplementation With Chlorogenic Acid Derived From Lonicera macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Xiao, Y.; Peng, Y.; He, J.; Chen, C.; Xiao, D.; Yin, Y.; Li, F. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs. Anim. Nutr. 2020, 7, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Jiang, J.-J.; Yu, J.; Mao, X.-B.; Yu, B.; Chen, D.-W. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs. J. Integr. Agric. 2019, 18, 143–151. [Google Scholar] [CrossRef]
- Wang, S.; Tang, C.; Li, J.; Wang, Z.; Meng, F.; Luo, G.; Xin, H.; Zhong, J.; Wang, Y.; Li, B.; et al. The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals 2022, 12, 2743. [Google Scholar] [CrossRef] [PubMed]
- Barszcz, M.; Taciak, M.; Tuśnio, A.; Skomiał, J. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats. PLOS ONE 2018, 13, e0190769. [Google Scholar] [CrossRef]
- Dávila-Ramírez, J.L.; Munguía-Acosta, L.L.; Morales- Coronado, J.G.; García- Salinas, A.D.; González-Ríos, H.; Celaya- Michel, H.; Sosa- Castañeda, J.; Sánchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A. Addition of a Mixture of Plant Extracts to Diets for a Percentage of Live Weight, Quality and Sensorial Analysis of Meat. Animals 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Aalhusi, J.L.; M Jonesi A L Schaeferi A K W Tongi W M Robertson, S.D.; Merrill, J.K.; Murrayi, A.C.; MnnntLl K aNo MunnaY, M.J. The Effect of Ractopamine on Performance, Carcass Composition and Meat Quality of Finishing Pigs. Can J Anim Sci 1990, 70, 934–952. [Google Scholar] [CrossRef]
- Bergstrom, J.R.; Skaar, G.R.; A Houser, T.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Goodband, R.D.; DeRouchey, J.M. Effects of dietary astaxanthin and ractopamine HCl on the growth and carcass characteristics of finishing pigs and the color shelf-life of longissimus chops from barrows and gilts. Kans. Agric. Exp. Stn. Res. Rep. 2011, 330–340. [Google Scholar] [CrossRef]
- Njoku, P.; Adeyemi, A.; Sogunle, A.; Aina, B. Growth Performance, Carcass Yield and Organ Weight of Growing Pigs Fed Different Levels of Feed. Slovak Journal of animal science 2015, 48, 16–22. [Google Scholar]
- De Lange, C.F.M.M.Z.S.A. Optimum Dietary Levels for Grower Finisher Short Distances to Slaughter. In Proceedings of the Procedings of the Centralia Swinw Research Update; 2003; pp. 25–27. [Google Scholar]
- Heras-Molina, A.; Pesantez-Pacheco, J.L.; Astiz, S.; Garcia-Contreras, C.; Vazquez-Gomez, M.; Encinas, T.; Óvilo, C.; Isabel, B.; Gonzalez-Bulnes, A. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Effects on Growth, Metabolism, and Body Composition of the Offspring. Animals 2020, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.M.; Singh, S.; Ganguly, I.; Ganguly, A.; Nachiappan, R.K.; Chopra, A.; Narula, H. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 2016, 141, 113–117. [Google Scholar] [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.; Yaqub, L.; Kawu, M. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Sun, C.; Li, F.; Xie, Y.; Liang, T.; Yang, Y.; Shi, B.; Ma, Q.; Shi, Z.; Chai, S.; et al. Effect of Gardenia Pomace Supplementation on Growth Performance, Blood Metabolites, Immune and Antioxidant Indices, and Meat Quality in Xiangcun Pigs. Animals 2022, 12, 2280. [Google Scholar] [CrossRef] [PubMed]
- Friendship, R.M.; Lumsden, J.H.; McMillan, I.; Wilson, M.R. Hematology and biochemistry reference values for Ontario swine. . 1984, 48, 390–3. [Google Scholar]
- Zhou, T.X.; Zhang, Z.F.; Kim, I.H. Effects of Dietary Coptis Chinensis Herb Extract on Growth Performance, Nutrient Digestibility, Blood Characteristics and Meat Quality in Growing-finishing Pigs. Asian-Australasian J. Anim. Sci. 2013, 26, 108–115. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.; Kim, I. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livest. Sci. 2012, 145, 189–195. [Google Scholar] [CrossRef]
- Hasan, S.; Hossain, M.M.; Alam, J.; Bhuiyan, M.E.R. Beneficial Effects of Probiotic on Growth Perfirmance and Hemato-Biochemical Parameters in Broilers during Heat Stress. Int J Innov Appl Stud 2015, 10, 244–249. [Google Scholar]
- Nicolás-López, P.; Macías-Cruz, U.; Mellado, M.; Correa-Calderón, A.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Growth performance and changes in physiological, metabolic and hematological parameters due to outdoor heat stress in hair breed male lambs finished in feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Hodgson, L.; Bussu, A.; Farhat, G.; Al-Dujaili, E. Effect of Polyphenol-Rich Dark Chocolate on Salivary Cortisol and Mood in Adults. Antioxidants 2019, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.M.; Park, J.W.; Kim, I.H. Effect of plant extracts on growth performance and insulin-like growth factor 1 secretion in growing pigs. Rev. Bras. de Zootec. 2015, 44, 355–360. [Google Scholar] [CrossRef]
- Liu, G.; Wei, Y.; Wang, Z.S.; Wu, D.; Zhou, A.G. Effects of herbal extract supplementation on growth performance and insulin-like growth factor (IGF)-I system in finishing pigs. J. Anim. Feed. Sci. 2008, 17, 538–547. [Google Scholar] [CrossRef]
| Variable | Value |
|---|---|
| Total phenols compounds, mg GAE /g | 20.8 |
| Flavonoids, mg/CE/g | 11.3 |
| Hydrolysable Tannins, mg GAE /g | 3.34 |
| Condensed Tannins, mg/CE/g | 0.8 |
| Anthocyanins, mg/CE/g | 1.08 |
| FRAP, µM ET/g | 104.7 |
| TEAC, µM ET/g | 139.4 |
| DPPH, µM ET/g | 114.8 |
| Ingredients | Treatments* | |||
|---|---|---|---|---|
| Control | FA | GPM | MIX | |
| Wheat grain, % | 76.2 | 76.2 | 73.7 | 73.7 |
| Soybean meal, % | 17.0 | 17.0 | 17.0 | 17.0 |
| Vegetable oil, % | 4.4 | 4.4 | 4.4 | 4.4 |
| Premix1, % | 2.4 | 2.4 | 2.4 | 2.4 |
| GPM, % | 0.0 | 0.0 | 2.5 | 2.5 |
| FA, mg/kg | -- | 25 | -- | 25 |
| Proximate Composition | ||||
| Crude protein, % | 14.0 | 14.0 | 13.9 | 13.9 |
| Moisture, % | 11.9 | 11.9 | 11.9 | 11.9 |
| Fat, % | 7.0 | 7.0 | 7.0 | 7.0 |
| Fiber crude, % | 2.0 | 2.0 | 2.1 | 2.1 |
| Ash, % | 7.0 | 7.0 | 7.0 | 7.0 |
| NFE, % | 58.1 | 58.1 | 58.1 | 58.1 |
| Treatments | p- values | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| FA, mg | GPM, % | FA | GPM | FA x GPM | |||||
| 0 | 25 | 0 | 2.5 | SEM | |||||
| AM | RT, °C | 38.65 | 38.7 | 38.69 | 38.66 | 0.004 | 0.521 | 0.611 | 0.931 |
| RR, bpm | 51.9 | 50.59 | 53.26 | 49.23 | 2.30 | 0.694 | 0.232 | 0.963 | |
| PM | RT, °C | 39.39 | 39.46 | 39.4 | 39.45 | 0.005 | 0.361 | 0.551 | 0.162 |
| RR, bpm | 82.55 | 82.21 | 83.23 | 81.51 | 3.57 | 0.673 | 0.496 | 0.622 | |
| Variable | Treatments | p- value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | 0 | 25 mg | FA | GPM | FA x GPM | ||||
| GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
| IBW, kg | 79.37 | 80.86 | 81.06 | 79.62 | 2.92 | 0.931 | 0.991 | 0.624 | |
| FBW, kg | 116.03 | 119.09 | 116.28 | 116.62 | 1.38 | 0.432 | 0.331 | 0.231 | |
| ADG, kg | 1.15 | 1.27 | 1.17 | 1.16 | 0.04 | 0.273 | 0.224 | 0.144 | |
| FI, kg DM/d | 2.74a | 2.99b | 2.86ab | 2.76a | 0.08 | 0.461 | 0.344 | 0.038 | |
| FC, kg DM | 2.39 | 2.38 | 2.40 | 2.39 | 0.07 | 0.552 | 0.617 | 0.692 | |
| Variables | Treatments | p-value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | 0 | 25 mg | FA | GPM | FA x GPM | ||||
| GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
| HCW, kg | 87 | 86.06 | 87.11 | 88.59 | 0.75 | 0.088* | 0.728 | 0.123 | |
| CCW, kg | 85.85 | 84.68 | 86.17 | 87.25 | 0.74 | 0.063* | 0.956 | 0.152 | |
| HCW yields, % | 82.41 | 81.21 | 82.62 | 83.61 | 0.53 | 0.022 | 0.851 | 0.056* | |
| CCW yields, % | 81.56 | 80.39 | 82.1 | 82.72 | 0.58 | 0.020 | 0.652 | 0.144 | |
| pH24 | 5.52 | 5.51 | 5.5 | 5.5 | 0.04 | 0.741 | 0.913 | 0.841 | |
| Backfat thickness, mm | 10.41 | 10.07 | 11.07 | 10.17 | 1.53 | 0.801 | 0.692 | 0.851 | |
| Marbling score | 2.75 | 2.44 | 3.017 | 2.35 | 0.23 | 0.723 | 0.049 | 0.472 | |
| Loin area, cm2 | 57.23 | 59.77 | 59.49 | 61.4 | 1.25 | 0.13 | 0.095* | 0.822 | |
| Relative weight organ |
Treatments | p-value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | 0 | 25 mg | FA | GPM | FA x GPM | ||||
| GPM | 0 | 2.5% | 0 | 2.5% | SEM | ||||
| Liver, % | 1.59ab | 1.69a | 1.60ab | 1.50b | 0.04 | 0.078* | 0.982 | 0.040 | |
| Spleen, % | 0.17 | 0.18 | 0.18 | 0.17 | 0.01 | 0.867 | 0.831 | 0.279 | |
| Heart, % | 0.36 | 0.36 | 0.35 | 0.36 | 0.02 | 0.744 | 0.803 | 0.983 | |
| Lung, % | 1.02 | 0.99 | 0.97 | 0.87 | 0.05 | 0.106 | 0.225 | 0.537 | |
| Stomach, % | 0.52 | 0.57 | 0.52 | 0.50 | 0.02 | 0.138 | 0.657 | 0.138 | |
| Kidney, % | 0.34 | 0.34 | 0.37 | 0.33 | 0.01 | 0.458 | 0.233 | 0.212 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
