Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Transposed Poisson Superalgebra

Version 1 : Received: 11 May 2023 / Approved: 12 May 2023 / Online: 12 May 2023 (08:38:03 CEST)

A peer-reviewed article of this Preprint also exists.

Abramov, V.; Liivapuu, O. Transposed Poisson Superalgebra. Proceedings of the Estonian Academy of Sciences 2024, 73, 50, doi:10.3176/proc.2024.1.06. Abramov, V.; Liivapuu, O. Transposed Poisson Superalgebra. Proceedings of the Estonian Academy of Sciences 2024, 73, 50, doi:10.3176/proc.2024.1.06.

Abstract

In this paper we propose the notion of a transposed Poisson superalgebra. We prove that a transposed Poisson superalgebra can be constructed by means of a commutative associative superalgebra and an even degree derivation of this algebra. Making use of this we construct two examples of transposed Poisson superalgebra. One of them is the graded differential algebra of differential forms on a smooth finite dimensional manifold, where we use the Lie derivative as an even degree derivation. The second example is the commutative superalgebra of basic fields of the quantum Yang-Mills theory, where we use the BRST-supersymmetry as an even degree derivation to define a graded Lie bracket. We prove several identities, which hold in a transposed Poisson superalgebra.

Keywords

Commutative superalgebra; Lie superalgebra, Poisson algebra; transposed Poisson algebra; graded differential algebra; quantum Yang-Mills theory

Subject

Computer Science and Mathematics, Algebra and Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.