Submitted:
05 May 2023
Posted:
05 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Numerical Simulations of the Schiaparelli Capsule and Parachute
2.1. Geometry of the Capsule with Parachute system
2.2. Numerical Set-up
2.2.1. Finite element model
2.2.2. Boundary conditions
3. Numerical Validation with reference work and theoretical results
3.1. Numerical Results
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| DGB | Disk-Gap-Band |
| LES | Large Eddy Simulations |
| TGO | Trace Gas Orbiter |
| ESA | European Space Agency |
| EDL | Entry, Descent & Landing |
| FSI | Fluid Structure Interactions |
| k | Turbulent kinetic energy |
| ω | Specific dissipation rate |
| SST | Shear Stress Transport |
| Li; (1,2,3,4,5) | Data points |
References
- NASA (2017). Mars planet facts news & images | NASA Mars rover + mission info. [online] Available at: https://mars.nasa.gov/ [Accessed 15 May 2017].
- Pezzella, G., Viviani, A., 2011, “Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars”, Journal of Thermodynamics, Volume 2011, Article ID 857061. [CrossRef]
- Hamilton, H. H., II, 2000, “Approximate Method of Predicting Heating on the Windward Side of the Space Shuttle Orbiter and Comparisons with Flight Data,” Entry Vehicle Heating and Thermal Protection Systems: Space Shuttle, Solar Starprobe, Jupiter Galileo Probe, Progress in Astronautics and Aeronautics. P. Bauer, and H. Collicott, eds., American Institute of Aeronautics and Astronautics, New York, NY, pp. 21- 53. [CrossRef]
- Hollis, Brian Ray. Experimental and computational aerothermodynamics of a Mars entry vehicle. North Carolina State University, 1996.
- Anderson Jr, John D. Hypersonic and High-Temperature Gas Dynamics. 2006.
- Sengupta, A., Steltzner, A., Witkowski, A., et al., 2007b. An overview of the Mars science laboratory parachute decelerator system. In: Aero- space Conference, 2007 IEEE. pp. 1–8.
- Li, S., Peng, Y., 2011. Mars entry trajectory optimisation using DOC and DCNLP. Adv. Space Res. 47, 440–452. [CrossRef]
- M. L. Accorsi, J. W. Leonard, R. J. Benney, and K. R. Stein, “Structural modeling of parachute dynamics,” AIAA Journal, vol. 38, no. 1, pp. 139–146, 2000. [CrossRef]
- M. L. Accorsi, R. J. Benney, V. Kalro, J. W. Leonard, K. R. Stein, and T. E. Tezduyar, “Parachute fluid-structure interactions: 3- D computation,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 3-4, pp. 373–386, 2000. [CrossRef]
- M.L.Accorsi, R.J.Benney, J.W.Leonard, K.R.Stein, and T.E.Tezduyar, “Fluid-structure interactions of a round parachute: modelling and simulation techniques,” Journal of Aircraft, vol. 38, no. 5, pp. 800–808, 2001. [CrossRef]
- Gao, X.L., Zhang, Q.B., Tang, Q.G., et al., 2013. Numerical study on fluid-structure interaction of slot-parachute’s inflation process. Acta Aeronaut. Astronaut. Sin. 34, 2265–2276. [CrossRef]
- Tezduyar, T.E., Kenji, T., Creighton, M., et al., 2010. Space–time finite element computation of complex fluid–structure interactions. Int. J. Numer. Methods Fluids 64, 1201–1218. [CrossRef]
- Peterson, C., Strickland, J., 1996. The fluid dynamics of parachute inflation. Annual Reviews of Fluid Mechanics 28, 361–387. [CrossRef]
- KARAGIOZIS, K., KAMAKOTI, R., CRIAK, F., and PANTANO, C. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane. Journal of Fluids and Structures, 27(2), 175–192 (2011). [CrossRef]
- Giulio, S. Numerical investigation of the parachute-capsule aerodynamics in a Mars atmosphere reentry. Master of Science, Università Degli Studi Di Padova, Italy, 2022.
- JOHARI, H. and DESABRAIS, K. J. Vortex shedding in the near wake of a parachute canopy. Journal of Fluid Mechanics, 536, 185–207 (2005).













| Gauge Pressure (Pa) | Temperature (K) | Mach number | Angle of attack |
|---|---|---|---|
| 2891 | 219 | 2 | 0º |
| Upstream | Analytical | Reference [14] | Reference Error % | Simulations | Simulation error % |
|---|---|---|---|---|---|
| M1 = 2.00 | M2 = 0.56 | M2 = 0.56 | 0% | 0.56 | 0% |
| ρ1 = 0.044 | ρ2 = 0.126 | ρ2 = 0.126 | 0% | 0.126 | 0% |
| p1 = 2891 | p2 = 12695.26 | p2 = 12691.49 | 0.02% | 12559.85 | 1.06% |
| T1 = 219 | T2 = 335.83 | T2 = 335.07 | 0.22% | 335.06 | 0.22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
