Submitted:
01 August 2023
Posted:
02 August 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Property
2.1. Equivalence of three forms
2.2. Property of H(g)
2.3. Shape of numbers
2.4. H(g) and Associated Stirling Numbers
- [6]
| g=0 | g=1 | g=2 | g=3 | g=4 | g=5 | g=6 | |
|---|---|---|---|---|---|---|---|
| M=1 | 1 | ||||||
| M=2 | 2 | 3 | |||||
| M=3 | 6 | 20 | 15 | ||||
| M=4 | 24 | 130 | 210 | 105 | |||
| M=5 | 120 | 924 | 2380 | 2520 | 945 | ||
| M=6 | 720 | 7308 | 26432 | 44100 | 34650 | 10395 | |
| M=7 | 5040 | 64224 | 303660 | 705320 | 866250 | 540540 | 135135 |
| g=0 | g=1 | g=2 | g=3 | g=4 | g=5 | g=6 | |
|---|---|---|---|---|---|---|---|
| M=1 | 1 | ||||||
| M=2 | 1 | 3 | |||||
| M=3 | 1 | 10 | 15 | ||||
| M=4 | 1 | 25 | 105 | 105 | |||
| M=5 | 1 | 56 | 490 | 1260 | 945 | ||
| M=6 | 1 | 119 | 1918 | 9450 | 17325 | 10395 | |
| M=7 | 1 | 246 | 6825 | 56980 | 190575 | 270270 | 135135 |
2.5. Table of H(g)
| PS | PT | |||
|---|---|---|---|---|
3. Application
3.1. Number analysis
3.2. Congruences
- Wolstenholme’s Theorem:
4. Combinatorial Identities
5. Matrix of SUM(N)
6. Eulerian polynomials and Beyond
| M=0 | M=1 | M=2 | M=3 | M=4 | M=5 | M=6 | OEIS | |
|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 6 | 26 | 150 | 1082 | 9366 | A000629 | |
| 1 | 3 | 12 | 66 | 480 | 4368 | 47712 | A123227 | |
| 1 | 4 | 20 | 132 | 1140 | 12324 | 160020 | A201355 |
7. Formal Calculation of Gaussian Coefficients
7.1. Basic concepts
- ,that is,all words with M-K zeroes and K ones, and inv(·) denotes the inversion statistic defined
7.2. Property
7.3. Application
7.4. Matrix of
8. Multi-parameter Formal Calculation
9. A theorem of symmetry
References
- Ji, P. Subdivide the Shape of Numbers and a Theorem of Ring. Open Access Library Journal 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Ji, P. Redefining the Shape of Numbers and Three Forms of Calculation. Open Access Library Journal 2021, 8, 1–22. [Google Scholar] [CrossRef]
- Ji, P. Further Study of the Shape of the Numbers and More Calculation Formulas. Open Access Library Journal 2021, 8, 1–27. [Google Scholar] [CrossRef]
- Ji, P. Application and Popularization of Formal Calculation. Open Access Library Journal 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Deng-Ji, Q. A New Explicit Expression for the Eulerian Numbers. Journal of Qingdao University of Science and Technology: Natural Science Edition 2012, 33, 439–440. [Google Scholar]
- Deng-Ji, Q. Associated Stirling number of the first kind. Journal of Qingdao University of Science and Technology: Natural Science Edition 2015, 36. [Google Scholar]
- Butler, S.; Karasik, P. A note on nested sums. Journal of Integer Sequences 2010, 13. [Google Scholar]
- Gould, H. Combinatorial Identites. From the seven unpublished manuscript of H.W. Gould. Edited by Jocelyn Quaintance 2010. [Google Scholar]
- Xiong, T.; Tsao, H.P.; Hall, J.I. General Eulerian Numbers and Eulerian Polynomials. Hindawi Publishing Corporation Journal of Mathematics 2015, 18. [Google Scholar] [CrossRef]
- Wünsche, A. Generalized Eulerian Numbers. Advances in Pure Mathematics 2018, 8, 335–361. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).