Preprint
Article

This version is not peer-reviewed.

Formal Calculation

Ji Peng  *

Submitted:

01 August 2023

Posted:

02 August 2023

Read the latest preprint version here

Abstract
Formal Calculation introduces a way to calculate various nested sums.It uses an auxiliary Form for calculation and provides results in three forms.Besides computation, it is also a powerful tool for analysis and studies various numbers in a unified way.This article contains many results of two types of Stirling numbers, associated Stirling numbers and Eulerian numbers. Formal Calculation provides a method for obtaining combinatorial identities. Applying it to the Gaussian coefficient is a new way for the analysis of q - Binomial. In the process of analysis, this paper makes a great generalization of Euler numbers and polynomials, Wilson's theorem and Wolstenholme's theorem, revealing that they are just special cases. Finally, this article introduces a theorem on symmetry.
Keywords: 
;  ;  ;  ;  ;  ;  

1. Introduction

Formal Calculation has gone through 3 years of development, and this article contains its summary and latest achievements. The concept is introduced in [1,2,3,4] .
Definition 1. 
Recursive define the operator p ,p is an integer.
0 f ( n ) = f ( n ) , n = 0 N 1 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 f ( n + 1 ) = 1 f ( N )
Definition 2. 
Recursive define SUM(N,PS,PT),abbreviated as SUM(N). K i , D i Ring with identity elements.
S U M ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 ( K 1 + n D 1 )
S U M ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 ( K 2 + n D 2 ) p S U M ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] )
I f f ( N ) = A i M i N i a n d M i i s n o t c h a n g e d w i t h N , t h e n p f ( N ) = A i M i p N i p
[ K 1 : D , K 2 : D . . . K M : D ] is abbreviated as [ K 1 , K 2 . . . K M ] : D , [ K 1 , K 2 . . . K M ] : 1 is abbreviated as [ K 1 , K 2 . . . K M ] .
By default,this paper use:
PS= [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] ,PT= [ T 1 , T 2 . . . T M ] ,PS1=[PS, K M + 1 : D M + 1 ],PT1=[PT, T M + 1 ]
This is actually nested summation. For example:
S U M ( N , P S , [ 1 , 2 , 3 . . . M ] ) = n = 0 N 1 i = 1 M ( K i + n D i )
S U M ( N , P S , [ 1 , 3 , 5 . . . 2 M 1 ] ) = n M = 0 N 1 ( K M + n M D M ) . . . n 2 = 0 n 3 ( K 2 + n 2 D 2 ) n 1 = 0 n 2 ( K 1 + n 1 D 1 )
S U M ( N , P S , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) n = 0 n 3 ( K 1 + n D 1 ) ( K 2 + n D 2 )
S U M ( N , P S , [ 1 , 3 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) ( K 2 + n 3 D 2 ) n = 0 n 3 ( K 1 + n D 1 )
The following use K to represent the set [ K 1 , K 2 . . . K M ] , T to represent the set [ T 1 , T 2 . . . T M ] .
Use the Form: ( K 1 + T 1 ) ( K 2 + T 2 ) . . . ( K M + T M ) = i = 1 M X i , X i = T i o r K i
Definition 3. 
X(T)=Number of { X 1 , X 2 . . . X M } T
Definition 4. 
X T 1 =Number of { X 1 , X 2 . . . X i 1 } T , X K 1 =Number of { X 1 , X 2 . . . X i 1 } K
Obviously: X T 1 + X K 1 = i 1
Theorem 1.1. 
[2] SUM(N,PS,PT)=
F o r m 1 g = 0 M H 1 ( g ) N 1 g N + T M M = g = 0 M H 1 ( g ) T M M + 1 + g N + T M M , B i = K i + X T 1 D i , X i = K i ( T i X K 1 ) D i , X i = T i
F o r m 2 g = 0 M H 2 ( g ) N 1 N + T M M + g = g = 0 M H 2 ( g ) T M M + 1 + g N + T M M + g , B i = K i + ( X K 1 T i ) D i , X i = K i ( T i X K 1 ) D i , X i = T i
F o r m 3 g = 0 M H 3 ( g ) N 1 g N + T M g = g = 0 M H 3 ( g ) T M + 1 N + T M g , B i = K i + X T 1 D i , X i = K i K i + ( T i X T 1 ) D i , X i = T i
The factors of X i cannot be exchanged. H i ( g ) , short for H i ( g , P S , P T ) ,is also defined above= X ( T ) = g i = 1 M B i
The theorem is proved by induction.There have three forms because:
n = 0 N 1 n M n + K = ( M + 1 ) M + 2 N + K + ( M K ) M + 1 N + K = ( M + 1 ) M + 2 N + K + 1 ( 1 K ) M + 1 N + K = ( M K ) M + 2 N + K + 1 + ( 1 + K ) M + 2 N + K
Definition 5. 
F M K = { K 1 , K 2 . . . K M } =∑(M-dictinct products,factors∈ K), F M N is short for F M { 1 , 2 . . . N } , F 0 K = 0
Definition 6. 
E M K = { K 1 , K 2 . . . K M } =∑(M-products,factors∈ K), E M N is short for E M { 1 , 2 . . . N } , E 0 K = 0
Theorem 1.2. 
S U M ( N , P S , [ 1 , 2 . . . M ] ) = i = 1 M ( K i + ( N 1 ) D i ) = i = 1 M ( K i + n D i )
Theorem 1.3. 
In SUM(N,[...PS...],[...T+1,T+2...T+M...]), K i can exchange orders.
Theorem 1.4. 
S U M ( N , [ L 1 , L 2 . . . L Q , P S ] , [ L 1 , L 2 . . . L Q , P T ] ) = i = 1 Q L i S U M ( N , P S , P T ) T 1 can great than 1, T i N
Theorem 1.5. 
S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = 1 M + 2 M + . . . + N M
Theorem 1.6. 
S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 3 . . . 2 M 1 ] ) = S U M ( N , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] )
= λ 1 + . . + λ N = M , λ i 0 1 λ 1 2 λ 2 . . . N λ N = 1 i 1 i 2 . . . i M N i 1 i 2 . . . i M = E M N = S 2 ( N + M , N )
S 2 is Stirling numbers of the second kind.
Theorem 1.7. 
S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 3 . . . 2 M 1 ] ) = S U M ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] )
= 1 i 1 < i 2 < . . . < i M N + M 1 i 1 i 2 . . . i M = F M N + M 1 = S 1 ( N + M , N )
S 1 is unsigned Stirling numbers of the first kind.
Example 1.1:
S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) F o r m = ( 1 + T 1 ) ( 2 + T 2 ) ( 3 + T 3 )
X ( T ) = 1 X i = 1 × 2 × T 3 + 1 × T 2 × 3 + T 1 × 2 × 3
H 1 ( 1 ) = 1 × 2 × ( T 3 X K 1 ) + 1 × ( T 2 X K 1 ) × ( 3 + X T 1 ) + T 1 × ( 2 + X T 1 ) × ( 3 + X T 1 ) = 1 × 2 × ( 5 2 ) + 1 × ( 3 1 ) × ( 3 + 1 ) + 1 × ( 2 + 1 ) × ( 3 + 1 ) = 26
S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) = 1 × 3 × 5 6 N + 2 + 35 5 N + 2 + 26 4 N + 2 + 1 × 2 × 3 3 N + 2
S U M ( N , [ 2 , 3 ] , [ 3 , 5 ] ) = 3 × 5 6 N + 3 + ( 2 × 4 + 3 × 4 ) 5 N + 3 + 2 × 3 4 N + 3
It also can be calculated in the Ring with identity elements.
S U M ( N , [ 7 3 1 2 : 1 3 4 2 , 2 1 1 2 : 2 3 1 2 ] , [ 1 , 3 ] ) = 15 27 30 48 4 N + 1 + 44 70 28 38 3 N + 1 + 17 13 4 5 2 N + 1
H 1 ( 1 ) = 1 × 1 3 4 2 [ 2 1 1 2 + 2 3 1 2 ] + 7 3 1 2 ( 3 1 ) 2 3 1 2 = 44 70 28 38

2. Property

2.1. Equivalence of three forms

By definition:
  • H 1 ( g , P S 1 , P T 1 ) = H 1 ( g 1 ) ( T M + 1 [ M ( g 1 ) ] ) D M + 1 + H 1 ( g ) ( K M + 1 + g D M + 1 )
  • H 2 ( g , P S 1 , P T 1 ) = H 2 ( g 1 ) ( T M + 1 [ M ( g 1 ) ] ) D M + 1 + H 2 ( g ) ( K M + 1 + [ M g T M + 1 ] D M + 1 )
  • H 3 ( g , P S 1 , P T 1 ) = H 3 ( g 1 ) ( K M + 1 + ( T M + 1 [ g 1 ] ) D M + 1 ) + H 3 ( g ) ( K M + 1 + g D M + 1 )
Using these relationships and induction can prove:
Theorem 2.1. 
H 1 ( g ) = k = g M H 2 ( k ) g k = k = 0 g H 3 ( k ) M g M k [3]
Inversion→
Theorem 2.2. 
H 2 ( g ) = k = g M ( 1 ) k + g H 1 ( k ) g k , H 3 ( g ) = k = 0 g ( 1 ) k + g H 1 ( k ) M g M k
Calculation with 2.1 →
Theorem 2.3. 
g = 0 M H 1 ( g ) = g = 0 M H 2 ( g ) 2 g = g = 0 M H 3 ( g ) 2 M g
Theorem 2.4. 
g = 0 M H 1 ( g ) B g A = g = 0 M H 2 ( g ) B A + g = g = 0 M H 3 ( g ) B g A + M g , A , B N
This F o r m 1 = F o r m 2 = F o r m 3 . A = B
Theorem 2.5. 
g = 0 M H 1 ( g ) g A = g = 0 M H 2 ( g ) g A + g = g = 0 M H 3 ( g ) M A + M g , A , B N
Induction [3]→
Theorem 2.6. 
g = 0 M H 1 ( g ) g B g A + 1 = g = 0 M H 2 ( g ) g B 1 A + g = g = 0 M { H 3 ( g ) g B g A + M g + M × H 3 ( g ) B 1 g A + M g }

2.2. Property of H(g)

X i = ( X i T ) ( X i K ) .In some cases, H(g) is easy to calculate.
Definition 7. 
H ( g , T ) , s h o r t f o r H ( g , T , P S , P T ) = X i T B i , H ( g , T ) = X i T B i
Also define H ( g , K ) , H ( g , K )
Theorem 2.7. 
If D i = 1 and T i + 1 = T i + 1 , H 1 ( g , T ) = i = 1 g T i . H 1 ( g , T , [ K 1 , K 2 . . . K M ] , [ 1 , 2 . . . M ] ) = g !
Theorem 2.8. 
H 1 ( g , K , [ 1 , 1 . . . 1 ] , P T ) = E M g g + 1
Theorem 2.9. 
If D i = 1 , H 1 ( g , K ) = F M g K E 0 g + F M g 1 K E 1 g + . . . + F 0 K E M g g
Theorem 2.10. 
If D i = 1 , H 1 ( g , T ) = F g T E 0 M g F g 1 T E 1 M g + . . . + ( 1 ) g F 0 T E g M g
Theorem 2.11. 
If D i = 1 and K i + 1 K i = T i + 1 T i = 1 , H 1 ( g ) = g M T 1 . . . T g × K g + 1 . . . K M
Theorem 2.12. 
If PS=PT, H 1 ( g ) = i = 1 M T i N M , H 2 ( M ) = H 3 ( 0 ) = i = 1 M T i , H 2 ( g < M ) = H 3 ( g > 0 ) = 0
Theorem 2.13. 
H 1 ( g , [ A D : D , P S ] , [ A , P T ] ) = A D ( H 1 ( g 1 ) + H 1 ( g ) ) H 1 ( g , [ 1 , P S ] , [ 1 , P T ] ) = H 1 ( g 1 ) + H 1 ( g )
Definition 8. 
E p q ( [ T 1 , T 2 . . . . T M ] , C )
= λ 1 + λ 2 + . . . + λ q = p , λ i 0 1 λ 1 2 λ 2 . . . q λ q ( T 1 + λ 1 C ) ( T 2 + λ 1 C + λ 2 C ) . . . ( T q 1 + λ 1 C + λ 2 C + . . . + λ q 1 C )
[5] has proved: g M = M 1 g M = E M g 1 g + 1 ( [ 1 , 1 . . . 1 ] , 1 ] )
g M is Eulerian numbers.Worpitzky identity: N M = g = 0 M 1 g M M N + g
2 5 = E 2 3 ( [ 1 , 1 . . . ] , 1 ) = λ 1 + λ 2 + λ 3 = 2 1 λ 1 2 λ 2 3 λ 3 ( 1 + λ 1 ) ( 1 + λ 1 + λ 2 )
= 1 2 2 0 3 0 ( 1 + 2 ) ( 1 + 2 ) + 1 0 2 2 3 0 ( 1 + 0 ) ( 1 + 0 + 2 ) + 1 0 2 0 3 2 ( 1 + 0 ) ( 1 + 0 + 0 )
+ 1 1 2 1 3 0 ( 1 + 1 ) ( 1 + 1 + 1 ) + 1 1 2 0 3 1 ( 1 + 1 ) ( 1 + 1 + 0 ) + 1 0 2 1 3 1 ( 1 + 0 ) ( 1 + 0 + 1 ) = 66
Theorem 2.14. 
H 1 ( g , [ 1 , 1 . . . 1 ] , P T = [ T i = T 1 + ( C + 1 ) ( i 1 ) ] ) = E M g g + 1 ( P T , C )
Theorem 2.15. 
H 3 ( g , [ 1 , 1 . . . 1 ] , P T = [ T i = T 1 + ( C + 1 ) ( i 1 ) ] ) = E M g g + 1 ( [ T i = T 1 1 + C ( i 1 ) ] , C + 1 )

2.3. Shape of numbers

In this section,if not specifically mentioned, T 1 = 1 , T i + 1 T i = 1 o r 2 .
To calculate 1 K 1 < K 2 < . . . < K M N K 1 K 2 . . . K M (*),products needs to be divided into 2 M 1 categories.
There are M-1 intervals between factors.If the interval=1,define as continuity. If the interval>1,define as discontinuity. Continuities, Discontinuities and their Positions, is defined as Shape. So there have 2 M 1 Shapes.From the definition of nested sum:
1 K 1 < K 2 N K 1 K 2 = S U M ( N , [ 1 , 2 ] , [ 1 , 2 ] ) + S U M ( N 1 , [ 1 , 3 ] , [ 1 , 3 ] )
1 K 1 < K 2 < K 3 N K 1 K 2 K 3 =
S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 3 ] ) + S U M ( N 1 , [ 1 , 2 , 4 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 4 ] ) + S U M ( N 2 , [ 1 , 3 , 5 ] , [ 1 , 3 , 5 ] )
Definition 9. 
PB(PT)=Number of T i + 1 < T i + 1 =Number of discontinuities
( * ) = A l l o f t h e S h a p e s S U M ( N P B ( P T ) , P T , P T ) .From 2.12 we can obtain a simple formula:
Theorem 2.16. 
S U M ( N , P T , P T ) = i = 1 M T i M + 1 N + T M , T i N
This is an important conclusion,generalizes the famous formula n = 0 N 1 M n = M + 1 N . It was discovered during the calculation of (*) and leads to the birth of Formal Calculation. There are two ways to understand SUM(N,PT,PT),one is nested sum,another is the intervals between factors.
Theorem 2.17. 
Number of Products in SUM(N,PT,PT) = P B ( P T ) + 1 N + P B ( P T )
Definition 10. 
M I N g ( M ) = P B ( P T ) = g i = 1 M T i = 1 × P B ( P T ) = g i = 2 M T i
This is the sum of the products of PTs with the same number of discontinuities.
( * ) = g = 0 M 1 M I N g ( M ) g + 1 N
By definition:
Theorem 2.18. 
M I N g ( M ) = ( M + g ) ! i 1 i 2 . . . i g , 2 i 1 < i 2 < . . . < i g M + g 1 , i j + 1 i j 2
Based on the concept of Shape rather than 2.18, it is easier to understand.eg:
M I N 1 ( 3 ) = ( 124 ) + ( 134 ) , M I N 2 ( 4 ) = ( 12357 ) + ( 12457 ) + ( 13457 ) + ( 12467 ) + ( 13467 ) + ( 13567 )
Here (...) is products.
From the definition of nested sum,there exists general classification principles:
Theorem 2.19. 
S U M ( N , [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] , [ T 1 , T 2 . . . T M ] )
= S U M ( N , P S , [ T 1 . . . T i , T i + 1 1 . . . T M 1 ] ) + S U M ( N 1 , [ K 1 : D 1 . . . K i : D i , K i + 1 + D i + 1 : D i + 1 . . . K M + D M : D M ] , P T )
e g : S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) = S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 5 ] )
= S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 3 ] ) + S U M ( N 1 , [ 1 , 2 , 4 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 4 ] ) + S U M ( N 2 , [ 1 , 3 , 5 ] , [ 1 , 3 , 5 ] )
( * ) = S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 3 . . . 2 M 1 ] ) . I t s e x a c t l y 1.7 .
We can also define Shape for general PS:
( K i + λ i D i ) , λ i < λ i + 1 , d i s c o n t i n u i t y λ i = λ i + 1 , c o n t i n u i t y
Definition 11. 
M I N g ( P S ) = K 1 × P B ( ( K i + λ i D i ) ) = g i = 2 M ( K i + λ i D i ) , λ 1 = 0 , λ i + 1 λ i = 0 o r 1
By definition of H(g):
Theorem 2.20. 
K 1 × H 1 ( g , [ K 2 : D 2 . . . K M : D M ] , [ K 2 D 2 + 1 , K 3 D 3 + 2 . . . K M D M + M 1 ] ) = M I N g ( P S )
Theorem 2.21. 
K 1 × H 2 ( g , [ D 2 : D 2 . . . D M : D M ] , [ K 2 D 2 + 1 , K 3 D 3 + 2 . . . K M D M + M 1 ] ) = ( 1 ) M 1 g M I N g ( P S )

2.4. H(g) and Associated Stirling Numbers

Associated Stirling Numbers of the first kind S 1 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k cycles, all length >= r.
  • S 1 , r ( n , k ) = n ! k ! i 1 + i 2 + . . . + i k = n , i j r 1 i 1 i 2 . . . i k
  • S 1 , r ( n + 1 , k ) = n S 1 , r ( n , k ) + ( n ) r 1 S 1 , r ( n r + 1 , k 1 ) , n k r
  • ( n 1 ) ! i 1 i 2 . . . i k 1 , r i 1 < i 2 < . . . < i k 1 n r , i j + 1 i j r [6]
Derived from 2 and definition of H(g) or 3 and 2.18:
Theorem 2.22. 
M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) = ( M + g + 1 ) ! ( g + 1 ) ! i 1 + i 2 + . . . + i g + 1 = M + g + 1 , i j 2 1 i 1 i 2 . . . i g + 1
Table 1. Table of M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) .
Table 1. Table of M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) .
g=0 g=1 g=2 g=3 g=4 g=5 g=6
M=1 1
M=2 2 3
M=3 6 20 15
M=4 24 130 210 105
M=5 120 924 2380 2520 945
M=6 720 7308 26432 44100 34650 10395
M=7 5040 64224 303660 705320 866250 540540 135135
Associated Stirling Numbers of the second kind S 2 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k blocks, all length >= r.
  • S 2 , r ( n , k ) = n ! k ! i 1 + i 2 + . . . + i k = n , i j r 1 i 1 ! i 2 ! . . . i k !
  • S 2 , r ( n + 1 , k ) = k S 2 , r ( n , k ) + r 1 n S 2 , r ( n r + 1 , k 1 ) , n k r
Derived from 2:
Theorem 2.23. 
H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) = ( M + g + 1 ) ! ( g + 1 ) ! i 1 + . . . + i g + 1 = M + g + 1 , i j 2 1 i 1 ! . . . i g + 1 !
Table 2. Table of H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) .
Table 2. Table of H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) .
g=0 g=1 g=2 g=3 g=4 g=5 g=6
M=1 1
M=2 1 3
M=3 1 10 15
M=4 1 25 105 105
M=5 1 56 490 1260 945
M=6 1 119 1918 9450 17325 10395
M=7 1 246 6825 56980 190575 270270 135135
S U M ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = S 1 ( N + M , N ) = S 1 , 1 ( N + M , N )
= g = 0 M 1 S 1 , 2 ( M + g + 1 , g + 1 ) M + 1 + g N + M = g = 1 M S 1 , 2 ( M + g , g ) M + g N + M
S 1 , 1 ( N + M , N ) = ( N + M ) ! N ! i 1 + i 2 + . . . + i N = N + M , i j 1 1 i 1 i 2 . . . i N
= ( N + M ) ! N ! g = 1 M [ i 1 + . . . + i N = N + M , i j 1 , N u m b e r o f i j > 1 = g 1 i 1 i 2 . . . i N ] = g = 1 M f ( * )
f ( * ) = ( N + M ) ! N ! N g N i 1 + . . . + i g = g + M , i j 1 1 i 1 i 2 . . . i g = M + g N + M S 1 , 2 ( M + g , g )
Use the same way:
Theorem 2.24. 
S 1 , r ( r N + M , N ) = g = 1 M 1 r N g ( r N r g ) ! ( N g ) ! r g + M r N + M S 1 , r + 1 ( r g + M , g )
Theorem 2.25. 
S 2 , r ( r N + M , N ) = g = 1 M 1 ( r ! ) N g ( r N r g ) ! ( N g ) ! r g + M r N + M S 2 , r + 1 ( r g + M , g )

2.5. Table of H(g)

Table 3. Table of H(g).
Table 3. Table of H(g).
PS PT H 1 ( g ) H 2 ( g ) H 3 ( g )
[ 1 , 1 . . . 1 ] [ 1 , 2 . . . M ] g ! E M g g + 1 = g ! S 2 ( M + 1 , g + 1 ) ( 1 ) M g g ! S 2 ( M , g ) g M
[ 1 , 1 . . . 1 ] [ 2 , 3 . . . M ] ( g + 1 ) ! S 2 ( M , g + 1 ) ( 1 ) M 1 g ( g + 1 ) ! S 2 ( M , g + 1 ) g M
[ 1 , 1 . . . 1 ] [ 1 , 3 . . . 2 M 1 ] E M g g + 1 ( P T , 1 ) ( 1 ) M g M I N g 1 ( M ) E M g g + 1 ( [ 0 , 1 . . . ] , 2 )
[ 1 , 1 . . . 1 ] [ 3 , 5 . . . 2 M 1 ] S 2 , 2 ( M + 1 + g , g + 1 ) ( 1 ) M 1 g M I N g ( M ) E M 1 g g + 1 ( [ 2 , 3 . . . ] , 2 )
[ 1 , 2 . . . M ] [ 1 , 3 . . . 2 M 1 ] M I N g 1 ( M ) + M I N g ( M ) 1 × ( 1 ) M g E M g g ( [ 3 , 5 . . . ] , 1 ) 1 × E g M g ( [ 2 , 3 . . . ] , 2 )
[ 2 , 3 . . . M ] [ 3 , 5 . . . 2 M 1 ] M I N g ( M ) ( 1 ) M 1 g S 2 , 2 ( M + 1 + g , g + 1 ) E g M g ( [ 2 , 3 . . . ] , 2 )

3. Application

3.1. Number analysis

Theorem 3.1. 
( K 1 + n D i ) can be decomposed into three forms by 1.1 and ∇.
Theorem 3.2. 
SUM(N,PS,PT)=SUM(N,[1,1...1,PS],[1,1...1,PT]) expand g = 0 M ( . . . ) = g = 0 M + ( n u m b e r o f 1 a d d e d ) ( . . . )
PS=[1,1...1],PT=[1,2...M], 2.1 H 1 ( M ) = g = 0 M H 3 ( g ) , H 1 ( 1 ) = g = 1 M H 2 ( g ) g
Theorem 3.3. 
g = 0 M g M = M ! , g = 1 M ( 1 ) M g g × g ! S 2 ( M , g ) = 2 M 1
PS=[1,1...1],PT=[2,3...M], 2.1 k = 0 M ( 1 ) M k k ! S 2 ( M , k ) = 1
Theorem 3.4. 
g ! S 2 ( M , g ) = k = g M ( 1 ) M k k ! S 2 ( M , k ) g 1 K 1 = k = 0 g 1 k M M g M 1 k , 1 g M
SUM(N,[2,3...M],[3,5...2M-1]),SUM(N,[1,1...1],[3,5...2M-1]), 2.1 →
Theorem 3.5. 
S 1 , 2 ( M + g , g ) = k = g M ( 1 ) M k S 2 , 2 ( M + k , k ) g 1 K 1 , S 2 , 2 ( M + g , g ) = k = g M ( 1 ) M k S 1 , 2 ( M + k , k ) g 1 K 1
SUM(N,[1,1...1],[2,3...M]), 2.3 →
Theorem 3.6. 
g = 1 M g ! S 2 ( M , g ) = g = 1 M ( 1 ) M g g ! S 2 ( M , g ) 2 g 1 = g = 1 M M g M 2 M g
SUM(N,[1,1...1],[3,5...2M-1]),SUM(N,[2,3...M],[3,5...2M-1]), 2.3 →
Theorem 3.7. 
g = 1 M S 2 , 2 ( M + g , g ) = g = 1 M ( 1 ) M g S 1 , 2 ( M + g , g ) 2 g 1 , g = 1 M S 1 , 2 ( M + g , g ) = g = 1 M ( 1 ) M g S 2 , 2 ( M + g , g ) 2 g 1
SUM(N,[1,1...1],[1,2...M]), 2.6 →
Theorem 3.8. 
g = 1 M g ! S 2 ( M , g ) ( g 1 ) g A + 1 = g = 1 M ( 1 ) M g g ! S 2 ( M , g ) ( g 1 ) g A + g 1
PS=PT=[1,2...M], H 1 ( g ) = H 1 ( M g ) = M ! g M , 2.9 g ! ( F M g K E 0 g + F M g 1 K E 1 g + . . . + F 0 K E M g g )
Theorem 3.9. 
M ! g M = g ! i = 0 M g S 1 ( M + 1 , g + 1 + i ) S 2 ( g + i , g ) = ( M g ) ! i = 0 g S 1 ( M + 1 , M + 1 i ) S 2 ( M i , M g )
H 1 ( g , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = g ! S 2 ( M + 1 , g + 1 ) , F i { 1 , 1 . . . 1 } = i M , 2.9
Theorem 3.10. 
S 2 ( M + 1 , g + 1 ) = i = 0 M g S 2 ( g + i , g ) g + i M = i = 0 M g S 2 ( M i , g ) i M
H 1 ( g , [ 1 , 2 . . . M ] , [ 1 , 2 . . . M ] ) = H 1 ( g , [ M , M 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = M ! g M 2.10
H 1 ( g ) = M ! g ! ( F g M E 0 M g F g 1 M E 1 M g + . . . + ( 1 ) g F 0 M E g M g )
Theorem 3.11. 
g ! g M = i = 0 g S 1 ( M + 1 , M + 1 g + i ) S 2 ( M g + i , M g ) ( 1 ) i
H 1 ( g , [ K + i ] , [ T + i ] ) , 2.11 g M T 1 . . . T g × K g + 1 . . . K M , 2.9 T 1 . . . T g ( . . . ) , 2.10 K g + 1 . . . K M ( . . . )
Theorem 3.12. 
i = g + 1 M ( K + i ) g M = F M g { K + i } E 0 g + . . . + F 0 { K + i } E M g g , i = 1 g ( T + i ) g M = F g { T + i } E 0 M g + . . . + ( 1 ) g F 0 { T + i } E g M g
SUM(1,[1,1…1],[3,5…2M-1])=1,SUM(1,[2,3…M],[3,5…2M-1])=M!, = S U M ( 1 ) = g = 0 M 1 H 2 ( g ) M + g + 1 M + g + 1
Theorem 3.13. 
g = 0 M 1 ( 1 ) M 1 g M I N g ( M ) = g = 1 M ( 1 ) M g S 1 , 2 ( M + g , g ) = 1 , g = 1 M ( 1 ) M g S 2 , 2 ( M + g , g ) = M !
2.20 and 2.21 →
Theorem 3.14. 
g = 0 M 1 ( 1 ) M 1 g M I N g ( P S ) = K 1 i = 2 M D i
S U M ( N , [ T , T . . . T ] , [ T , T . . . T ] ) = T M T + 1 N + T = g = 0 M T M g M T M + 1 + g N + T M
Theorem 3.15. 
g = 0 M g M T M + 1 + g N + T M = T + 1 N + T , T N

3.2. Congruences

P is prime. K i is any integer.
Theorem 3.16. 
( P , D ) = 1 , S U M ( P , [ K 1 , K 2 . . . K M ] : D , [ 1 , 2 . . . M ] ) = g = 0 M H 1 ( g ) 1 + g P 1 ( mod P ) , M = P 1 0 ( mod P ) , M < P 1
Proof. 
If M=P-1, S U M ( P ) H 1 ( P 1 ) P P H 1 ( P 1 ) ( P 1 ) ! D P 1 1 ( mod P )
If a product has a factor 0 ( mod P ) ,ignore it;change factors to its minimum positive residue,we can obtain many congruences.Wilson’s Theorem is just a special case . A , B , C N
1 A 2 B + 2 A 3 B + . . . + ( P 2 ) A ( P 1 ) B 1 A 3 B + 2 A 4 B + . . . + ( P 3 ) A ( P 1 ) B + ( P 1 ) A 1 B 1 ( mod P ) , A + B = P 1 0 ( mod P ) , A + B < P 1
1 A 2 B 3 C + 2 A 3 B 4 C + . . . + ( P 3 ) A ( P 2 ) B ( P 1 ) C 1 ( mod P ) , A + B + C = P 1 0 ( mod P ) , A + B + C < P 1
Theorem 3.17. 
0 < K i , K j < P , K i K j K 1 λ 1 K 2 λ 2 . . . K q λ q 0 mod P , λ 1 + λ 2 + . . . + λ q < P 1 1 mod P , λ 1 + λ 2 + . . . + λ q = P 1 , λ i N
Theorem 3.18. 
M I N g ( M ) 0 ( mod P ) , 0 < g < M 1 , g + M = P 1
Wolstenholme’s Theorem is also a special case.P>3.
  • Wolstenholme’s Theorem: ( P 1 ) ! n = 1 P 1 1 n = 0 < K i , K j < P , K i K j K 1 K 2 . . . K P 2 0 ( mod P 2 )
  • n = 1 P 1 n P 2 0 ( mod P 2 )
They are two extremes.In fact,there have:
Theorem 3.19. 
0 < K i , K j < P , K i K j K 1 C 1 K 2 C 2 . . . K q C q 0 ( mod P 2 ) , C 1 + C 2 + . . . + C q = P 2 , C i > 0
Proof. 
If X ( mod P 2 ) and X + Y ( mod P 2 ) then Y ( mod P 2 ) .The Sum has symmetry.
For A B P 3 ,pair each A B P 3 with ( P A ) B P 3 to P B P 3 , ( P A ) B P 3 A B P 3 o r B P 2 .
( P a i r e d P r o d c u t s ) = x A B P 3 + y B P 2 = z P B P 3 , 0 < x , y < P .
2 y B P 2 0 ( mod P 2 ) ; P B P 3 0 ( mod P 2 ) .So A B P 3 0 ( mod P 2 ) .
Similarly:
( P a i r e d P r o d c u t s o f A B C P 4 + B 2 C P 4 ) = x A B C P 4 + y B 2 C P 4 0 ( mod P 2 ) , 0 < x , y < P
x A B C P 4 + y B 2 C P 4 , s y m m e t r y
z ( A + B ) B C P 4 z A B C P 4 ( mod P ) , 0 < z < P
A B C P 4 B 2 C P 4 0 ( mod P 2 )
Prove the conclusion in a similar way... □
Theorem 3.20. 
E P 2 P 1 = S 2 ( 2 P 3 , P 1 ) 0 ( mod P 2 ) ; E P 2 P = S 2 ( 2 P 2 , P ) 0 ( mod P 2 )
e g : S 2 ( 7 , 4 ) = 350 0 ( mod 25 ) , S 2 ( 8 , 5 ) = 1050 0 ( mod 25 )
e g : S 2 ( 11 , 6 ) = 179487 0 ( mod 49 ) , S 2 ( 12 , 7 ) = 627396 0 ( mod 49 )

4. Combinatorial Identities

Definition 12. 
R-FOLD SUM: ( r ) N f ( k ) = k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 f ( k 1 ) = k r = 0 N 1 . . . k 2 = 0 k 3 k 1 = 0 k 2 f ( k 1 + 1 )
By nested sum:
Theorem 4.1. 
( r ) N p S U M ( k , P S , P T ) = p r S U M ( N , P S , P T )
Theorem 4.2. 
k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 S U M ( k r , P S , [ 1 , 2 . . . M ] ) = S U M ( N , P S , [ T i = i + r 1 ] )
Proof. 
P T = [ T i = i + r 1 ]
P S 1 = [ 1 : 0 , 1 : 0 . . . 1 : 0 , P S ] , P T 1 = [ 1 , 3 . . . 2 ( r 1 ) 1 , 1 + 2 ( r 1 ) , 2 + 2 ( r 1 ) . . . M + 2 ( r 1 ) ]
B i < r = K i + X K 1 D i = 1 , X i K ( T i X T 1 ) D i = 0 , X i T H 1 ( g > M , P S 1 , P T 1 ) = 0 , H 1 ( g M , P S 1 , P T 1 ) = H 1 ( g , P S , P T )
S U M ( N , P S 1 , P T 1 ) = g = 0 M H 1 ( g , P S , P T ) r + g N + r 1 = k r = 1 N S U M ( k r , P S , [ 1 , 2 . . . M ] ) . . . k 2 = 1 k 3 k 1 = 1 k 2 1
Theorem 4.3. 
k x = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 S U M ( k r , P S , [ 1 , 2 . . . M ] ) = r x S U M ( N , P S , [ T i = i + ( r 1 ) ] )
e g : ( * ) k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 j k i = 1 j ! i r S U M ( N , [ 0 , 1 , 2 . . . ( j 1 ) ] , [ T n = n + ( i 1 ) ] )
H 1 ( g < j ) = 0 , T j j = i 1
( * ) = 1 j ! i r H 1 ( j ) j + 1 + ( i 1 ) ( N + 1 ) + ( i 1 ) = 1 j ! i r ( j + i 1 ) ! ( i 1 ) ! j + i N + i = i 1 j + i 1 j + i ( i r ) N + i ( i r ) = i 1 j + i 1 j + r N + r [7]
Using induction to prove:
Theorem 4.4. 
0 n 1 . . . . n M N 1 ( K + n 1 D 1 + . . . . + n M D M ) = 2 M S U M ( N , [ K : D 1 + 2 D 2 + . . . . + M D M 2 M + 1 , [ 2 M + 1 ] )
= ( D 1 + 2 D 2 + . . . . + M D M ) M + 1 N + M 1 + K M N + M 1
0 n 1 n 2 . . . . n M N 1 ( K + n 1 + n 2 + . . . . + n M ) = 2 M + 1 M + 1 N + M 1 + K M N + M 1
0 n 1 . . . . n p n ( n 1 + . . . . + n p ) = n p = 0 n n p 1 = 0 n p . . . n 1 = 0 n 2 ( n 1 + . . . . + n p ) = 2 p + 1 p + 1 n + p = p n 2 p n + p . [7]
1.2, 1.3, 1.4 can be used to derive combinatorial identities.
Theorem 4.5. 
A n + A M n + M + B =
g = 0 M g A + g M g M + B A + g n + A = g = 0 M ( 1 ) M g g A + g M g A B A + g n + A + g = g = 0 M g A B M g M + B A + M n + A + M g
Proof. 
o r i g i n a l = 1 A ! M ! S U M ( N , [ 1 , 2 . . . A , B + 1 , B + 2 . . . . B + M ] , [ 1 , 2 . . . A , A + 1 , A + 2 . . . . A + M ] )
= 1 M ! S U M ( N , [ B + 1 , B + 2 . . . . B + M ] , [ A + 1 , A + 2 . . . . A + M ] )
H 1 ( g ) = g M ( A + 1 ) . . . . ( A + g ) ( B + g + 1 ) . . . . ( B + M ) = g M g ! g A + g ( M g ) ! M g B + M
Using a similar method to obtain H 2 ( g ) , H 3 ( g )
Theorem 4.6. 
A n + X M n + Y = g = 0 A g M + g A g M + X Y M + g n + Y , 0 Y M
Proof. 
o r i g i n a l = 1 A ! M ! S U M ( N , [ X , X 1 . . . X A + 1 , Y , Y 1 . . . Y M + 1 ] , [ 1 , 2 . . . A + M ] )
= 1 A ! M ! S U M ( N , [ 1 , 2 . . . Y , 0 , 1 , 2 . . . ( M Y ) + 1 , X , X 1 . . . X A + 1 ] , [ 1 , 2 . . . A + M ] )
= Y ! A ! M ! S U M ( N , [ 0 , 1 , 2 . . . ( M Y ) + 1 , X , X 1 . . . X A + 1 ] , [ Y + 1 , Y + 2 . . . A + M ] )
I f H 1 ( g ) 0 t h e n X 1 , X 2 . . . X M Y T H 1 ( g < M Y ) = 0 , L e t C = A + M Y
H 1 ( g M Y ) 0 N u m b e r o f K = C g C ( M Y ) H 1 ( g M Y , K ) = C g C ( M Y ) [ X + M Y ] C g
H 1 ( g M Y ) = C g C ( M Y ) [ X + M Y ] C g [ Y + 1 ] g
o r i g i n a l = Y ! M ! A ! g = M Y C C g C ( M Y ) [ X + M Y ] C g [ Y + 1 ] g Y + g n + Y , q = M Y g
= Y ! M ! A ! q = 0 A A q A A q X + M Y ( A q ) ! M Y + q M + q ( M Y + q ) ! M + q n + Y
PS=[0,-1,-2...-(B-1),A-(M-B-1):-1,A-(M-B-1)+1:-1...A:-1],PT=[1,2...M]→
Theorem 4.7. 
B n M B A n = g = 0 M B ( 1 ) M B g g A M + g B M g M g n , n 0
PS=[0,-1,-2...-A+1,0,-1,-2...-B+1],PT=[1,2...A+B]→
Theorem 4.8. 
A n B n = g = 0 B g B B g A + B g A + B g n . record at [8]: (6.44)
Theorem 4.9. 
i = 1 M ( A + 2 i + n ) = A n + A 1 g = 0 M ( 2 ( M g ) 1 ) ! ! g 2 M g [ A + 1 ] g A + g n + A + g A ∈ N or A = 0
Proof. 
PS=[A+2,A+4...A+2M],PT=[A+1,A+2...A+M]
H 2 ( g , K ) = S U M ( g + 1 , [ 1 , 3 . . . 2 ( M g ) 1 ] , [ 1 , 3 . . . 2 ( M g ) 1 ] ) ) = ( 2 ( M g ) 1 ) ! ! g 2 M g , H 2 ( g , T ) = [ A + 1 ] g
A n + A i = 1 M ( A + 2 i + n ) = 1 A ! S U M ( N , [ 1 , 2 . . . A , P S ] , [ 1 , 2 . . . A , P T ] ) = S U M ( N , P S , P T )
Theorem 4.10. 
SUM(N,[A+1,A+3...A+2M-1],[1,3...2M-1])= g = 0 M [ A ] M g ( 2 g 1 ) ! ! 2 g M + g M + g N + M 1 + g
Proof. 
H 2 ( g , T ) = S U M ( M g + 1 , [ 1 , 3 . . . 2 g 1 ] , [ 1 , 3 . . . 2 g 1 ] ) ) = ( 2 g 1 ) ! ! 2 g M + g , H 2 ( g , K ) = [ A ] M g
Theorem 4.11. 
SUM(N,[A,A+1...A+M-1]:2,[1,3...2M-1])= M M + N 1 [ A + M + N 2 ] M
Proof. 
S U M ( g + 1 , [ A , A + 1 . . . A + M 1 g ] : 2 , [ 1 , 3 . . . 2 ( M g ) 1 ] )
= H 1 ( g , K , [ A , A + 1 . . . A + M 1 ] , [ 1 , 2 . . . M ] ) = g M [ A + M 1 ] M g
S U M ( N , [ 1 , 2 . . . M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = M ! M N + M 1 2 , M = 1 1 + 3 + . . . + ( 2 N 1 ) = N 2
4.11 and 4.5 →
Theorem 4.12. 
1 M ! H ( g , [ A + 1 , A + 2 . . . A + M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = H ( g , [ A + 1 , A + 2 . . . A + M ] , [ M + 1 , M + 2 . . . 2 M ] )
T h i s H 1 ( g , [ A + 1 , A + 2 . . . A + M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = M ! g M + g M g M + A
D e f i n i t i o n o f H 1 ( g )
H 1 ( 1 ) = 2 { ( A + 1 ) . . . ( A + M 1 ) × M + ( A + 1 ) . . . ( A + M 2 ) × ( M 1 ) × ( A + M + 2 ) × ( M 1 ) + . . . }
Theorem 4.13. 
n = 0 M 1 ( M n ) k = 1 M 1 ( A + k + 3 [ k + n M ] ) = ( M + 1 ) ! 2 M 1 M + A .[n] is truncates integer.
Theorem 4.14. 
S U M ( N , [ A + 2 , A + 4 . . . A + 2 M ] : 3 , [ 1 , 3 . . . 2 M 1 ] ) = g = 0 M g A + N 1 + g M g N + M 1 g [ M + N g ] M 2 M g
Proof. 
PS1=[A+2,A+4...A+2M],PT1=[A+1,A+2...A+M]
H 1 ( g , P S 1 , P T 1 ) = [ A + 1 ] g S U M ( g + 1 , [ A + 2 , A + 4 . . . A + 2 ( M g ) ] : 3 , [ 1 , 3 . . . 2 ( M g ) 1 ] ) )
= k = g M H 2 ( g , P S 1 , P T 1 ) g k , 4.9 = k = g M ( 2 ( M k ) 1 ) ! ! k 2 M k [ A + 1 ] k g k

5. Matrix of SUM(N)

Consider H(g) as variables,list SUM(N),SUM(N+1)…SUM(N+M),we can obtain a (M+1) ×(M+1) matrix.
Let P = N + T M M , Q = N 1 ,define A(P,Q,M), respectively corresponding to the three forms.
A 1 ( P , Q , M ) = Q P Q M P Q + M P + M Q P + M
A 2 ( P , Q , M ) = Q P Q P + M Q + M P + M Q + M P + 2 M
A 3 ( P , Q , M ) = Q P + M Q M P Q + M P + 2 M Q P + M
Theorem 5.1. 
A 1 ( P , Q , M ) = A 2 ( P , Q , M ) = A 3 ( P , Q , M ) , A ( P , Q , M ) = A ( P , P Q , M ) [3]
Theorem 5.2. 
A ( P , 0 , M ) = 1 , A ( P , 1 , M ) = 1 + M P + M , A ( P , Q > 1 , M ) = g = 0 Q 1 1 + M P + M g 1 + M 1 + M g [3]
If SUM(N) or ∇SUM(N) is easy to obtained,then H(g) can be calculated with Cramer’s law.Below, T M M
Theorem 5.3. 
H 1 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k T M M + k T M M + 1 + g S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k T M M + k 1 T M M + g S U M ( k )
S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 2 . . . M ] ) = M ! M + 1 N + M g M = k = 1 g + 1 ( 1 ) g + 1 + k k 1 + g M + 1 k + M
S U M ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = S 1 ( N + M , N ) M I N g ( M ) = k = 1 g + 1 ( 1 ) g + 1 + k M + k M + 1 + g S 1 ( M + k , k )
( 1 ) S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M S 2 ( M , g ) = 1 g ! k = 0 g ( 1 ) g + k k g k M = 1 g ! k = 0 g ( 1 ) k k g ( g k ) M
Theorem 5.4. 
z ( k ) = i = 1 k ( 1 ) i + k i k S U M ( k ) , H 2 ( g ) = k = g + 1 M + 1 ( 1 ) g + k 1 g k 1 z ( k )
S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M z ( k ) = i = 1 k ( 1 ) i + k i k i M = k ! S 2 ( M , k )
g ! S 2 ( M , g ) = k = g M ( 1 ) M + k g 1 k 1 k ! S 2 ( M , k ) 3.4
Theorem 5.5. 
H 3 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k g + 1 k 2 + T M S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k g + 1 k 1 + T M S U M ( k )
( 2 ) S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M g M = k = 1 g + 1 ( 1 ) 1 + g + k g + 1 k M + 1 k M = k = 0 g ( 1 ) k k M + 1 ( g + 1 k ) M
(1)(2) are already known formula.

6. Eulerian polynomials and Beyond

In this section, q 0 , q 1 .
Inductive proof:
Theorem 6.1. 
n = 0 N 1 q n M n + K = q N g = 0 M ( 1 ) g M g N + K 1 g ( q 1 ) g + 1 + q M K ( 1 q ) M + 1
Definition 13. 
A q M = k = 0 M ( 1 q ) M k q k S 2 ( M , k ) k ! , A q 0 = 1 , A q 1 = q
Table 4. Table of A q M .
Table 4. Table of A q M .
M=0 M=1 M=2 M=3 M=4 M=5 M=6 OEIS
A 2 M 1 2 6 26 150 1082 9366 A000629
A 3 M 1 3 12 66 480 4368 47712 A123227
A 4 M 1 4 20 132 1140 12324 160020 A201355
Use 3.4
Theorem 6.2. 
A q M = q k = 0 M ( q 1 ) M k S 2 ( M , k ) k !
n M = S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = g = 0 M S 2 ( M , g ) g ! g n = g = 0 M ( 1 ) M g S 2 ( M , g ) g ! g n + g = g = 0 M g M M n + g
( 1 ) n = 0 N 1 q n n M = g = 0 M S 2 ( M , g ) g ! n = 0 N 1 q n g n
= g = 0 M S 2 ( M , g ) g ! { q N k = 0 g ( 1 ) k g k N 1 k ( q 1 ) k + 1 + q g ( 1 q ) g + 1 }
= q N ( q 1 ) M + 1 g = 0 M S 2 ( M , g ) g ! k = 0 M ( 1 ) k g k N 1 k ( q 1 ) M k + g = 0 M S 2 ( M , g ) g ! ( 1 q ) M g q g ( 1 q ) M + 1
= q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k g = 0 M S 2 ( M , g ) g ! g k N 1 k + A q M ( 1 q ) M + 1
= q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k k ( N 1 ) M + A q M ( 1 q ) M + 1 ( * )
Use the F r o m 2 of n M in (1),the first part of (*) keep same, we can obtain 6.2. Use the F r o m 3 :
Theorem 6.3. 
A q M = g = 0 M g M q M g = g = 0 M g M q 1 + g
n M = S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = g = 0 M S 2 ( M + 1 , g + 1 ) g ! g n 1
Theorem 6.4. 
A q M = k = 0 M ( 1 q ) M k q k + 1 S 2 ( M + 1 , k + 1 ) k ! , M > 0
S 2 ( M + 1 , k + 1 ) = 1 ( k + 1 ) ! j = 0 k + 1 ( 1 ) j + k + 1 j k + 1 j M + 1 = 1 k ! j = 0 k ( 1 ) j + k j k ( j + 1 ) M
k ( N 1 ) M = j = 0 k ( 1 ) j j k ( N 1 j ) M = j = 0 k ( 1 ) j j k g = 0 M g M N g ( j + 1 ) M g ( 1 ) M g
= g = 0 M ( 1 ) M g k g M N g j = 0 k ( 1 ) j + k j k ( j + 1 ) M g = g = 0 M ( 1 ) M g k g M N g S 2 ( M g + 1 , k + 1 ) k !
( * ) = q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k { g = 0 M ( 1 ) M g k g M N g S 2 ( M g + 1 , k + 1 ) k ! } + A q M ( 1 q ) M + 1
= q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g ( q 1 ) g g M N g k = 0 M ( q 1 ) M k g S 2 ( M g + 1 , k + 1 ) k ! + A q M ( 1 q ) M + 1 ( * * )
N = 0 , ( * ) = 0 q N ( q 1 ) M + 1 ( . . . ) + A q M ( 1 q ) M + 1 = 0
Theorem 6.5. 
A q M = k = 0 M ( q 1 ) M k S 2 ( M + 1 , k + 1 ) k !
A q M g = k = 0 M ( q 1 ) M k g S 2 ( M g + 1 , k + 1 ) k ! F r o m ( * * )
Theorem 6.6. 
n = 0 N 1 q n n M = q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g ( q 1 ) g g M A q M g N g + A q M ( 1 q ) M + 1
Table 5. Table of n = 0 N 1 q n n M .
Table 5. Table of n = 0 N 1 q n n M .
n = 0 N 1 q n n = q N ( ( q 1 ) N q ) + q ( q 1 ) 2
n = 0 N 1 2 n = 2 N 1
n = 0 N 1 2 n n = 2 N ( N 2 ) + 2
n = 0 N 1 2 n n 2 = 2 N ( N 2 4 N + 6 ) 6
n = 0 N 1 2 n n 3 = 2 N ( N 3 6 N 2 + 18 N 26 ) + 26
n = 0 N 1 2 n n 4 = 2 N ( N 4 8 N 3 + 36 N 2 104 N + 150 ) 150
n = 0 N 1 2 n n 5 = 2 N ( N 5 10 N 4 + 60 N 3 260 N 2 + 750 N 1082 ) + 1082
n = 0 N 1 3 n = 3 N 1 2
n = 0 N 1 3 n n = 3 N ( 2 N 3 ) + 3 4
n = 0 N 1 3 n n 2 = 3 N ( 4 N 2 12 N + 12 ) 12 8
n = 0 N 1 3 n n 3 = 3 N ( 8 N 3 36 N 2 + 72 N 66 ) + 66 16
n = 0 N 1 3 n n 4 = 3 N ( 16 N 4 96 N 3 + 288 N 2 528 N + 480 ) 480 32
n = 0 N 1 4 n n 0 = 4 N 1 3
n = 0 N 1 4 n n 1 = 4 N ( 3 N 4 ) + 4 9
n = 0 N 1 4 n n 2 = 4 N ( 9 N 2 24 N + 20 ) 20 27
n = 0 N 1 4 n n 3 = 4 N ( 27 N 3 108 N 2 + 180 N 132 ) + 132 81
We know that Eulerian polynomials: A M ( t ) : i = 0 t i i M = t A M ( t ) ( 1 t ) M + 1 , A M ( t ) = g = 0 M 1 g M t g
| q | < 1 , lim N n = 0 N 1 q n n M = A q M ( 1 t ) M + 1 A t M = t A M ( t ) . There have 5 expressions for A M ( t ) .
Eulerian Numbers and Polynomials is just a special case,we can handler:
n = 0 N 1 q n p S U M ( n + Y , P S , P T ) , X = T M M p
= g = 0 M H 1 ( g ) n = 0 N 1 q n X + 1 + g n + Y + X = g = 0 M H 1 ( g ) { q N k = 0 X + 1 + g ( 1 ) k X + 1 + g k N + Y + X 1 k ( q 1 ) k + 1 + q 1 + g Y ( 1 q ) X + 2 + g } g = 0 M H 2 ( g ) n = 0 N 1 q n X + 1 + g n + Y + X + g = g = 0 M H 2 ( g ) { q N k = 0 X + 1 + g ( 1 ) k X + 1 + g k N + Y + X + g 1 k ( q 1 ) k + 1 + q 1 Y ( 1 q ) X + 2 + g } g = 0 M H 3 ( g ) n = 0 N 1 q n X + 1 + M n + Y + X + M g = g = 0 M H 3 ( g ) { q N k = 0 X + 1 + M ( 1 ) k X + 1 + M k N + Y + X + M g 1 k ( q 1 ) k + 1 + q 1 + g Y ( 1 q ) X + 2 + M }
Y = 0
Theorem 6.7. 
n = 0 M H 1 ( g ) ( 1 q ) M g q g + 1 = q n = 0 M H 2 ( g ) ( 1 q ) M g = n = 0 M H 3 ( g ) q g + 1
Here q can take any value,which is magical. q = 0.5 2.3
Definition 14. 
A q ( P S , P T ) = 6.7
Theorem 6.8. 
n = 0 N 1 q n p S U M ( n + Y , P S , P T ) = q N ( q 1 ) M + 1 k = 0 M ( q 1 ) M k ( 1 ) k p + K 1 S U M ( N + Y 2 ) + A q ( P S , P T ) q Y ( 1 q ) T M p + 2
Theorem 6.9. 
n = 0 q n p S U M ( n + Y , P S , P T ) = A q ( P S , P T ) q Y ( 1 q ) T M + 2 p
e g : A q M ( [ d , d . . . d ] : d , [ 1 , 2 . . . M ] ) = d M A q M
n = 0 N 1 q n ( n d ) M = q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g ( q 1 ) g g M A q M g ( [ d , d . . . d ] : d , [ 1 , 2 . . . M ] ) ( n d ) g + d M A q M ( 1 q ) M + 1
Many results of [9,10] can be obtained by this.

7. Formal Calculation of Gaussian Coefficients

7.1. Basic concepts

Gaussian Coefficients: M N q = ( q N 1 ) ( q N 1 1 ) . . . ( q N M + 1 1 ) ( q M 1 ) ( q M 1 1 ) . . . ( q 1 1 ) , q 0 , 1 ,abbreviated as G M N
  • G 0 N = 1 , G M < 0 , M > N N = 0 , G M N = G N M N
  • G M N = q M G M N 1 + G M 1 N 1 = G M N 1 + q N M G M 1 N 1
  • n = 0 N 1 q n G M n + K = q M K G M + 1 N + K
  • G K M = w Ω ( 0 M K , 1 K ) q i n v ( w ) ,that is,all words w = w 1 w 2 w M with M-K zeroes and K ones, and inv(·) denotes the inversion statistic defined
The Formal Calculation was obtained by [3]. It use q n ( K i + G 1 n D i ) instead of K i + q n D i .
Definition 15. 
Recursive define the operator q p ,p is an integer.
q 0 f ( n ) = f ( n ) , n = 0 N 1 q n q 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 q n f ( n + 1 ) = q 1 f ( N )
Definition 16. 
Recursive define S U M q ( N , P S , P T ) ,abbreviated as S U M q ( N ) .
S U M q ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 q n ( K 1 + G 1 n D 1 )
S U M q ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 q n ( K 2 + G 1 n D 2 ) p S U M q ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] )
Theorem 7.1. 
n = 0 N 1 q n G 1 n G M n + K , M > 0 , M K
= q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K G M + 1 N + K
= q M 2 K 1 G 1 M + 1 G M + 2 N + K + 1 + q M K ( G 1 M K q K 1 G 1 M + 1 ) G M + 1 N + K
= ( q 2 ( M K ) + 1 G 1 M + 1 q 2 M K + 2 G 1 M K ) G M + 2 N + K + q M K G 1 M K G M + 2 N + K + 1
Use this and induction to prove:
Theorem 7.2. 
S U M q ( N , P S , P T ) =
F o r m 1 g = 0 M H 1 q ( g ) G N 1 g N + T M M = g = 0 M H 1 q ( g ) G T M M + 1 + g N + T M M , B i = q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 ) X T 1 G 1 T i X K 1 D i , X i = T i
F o r m 2 g = 0 M H 2 q ( g ) G N 1 N + T M M + g = g = 0 M H 2 q ( g ) G T M M + 1 + g N + T M M + g , B i = K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = T i
F o r m 3 g = 0 M H 3 q ( g ) G N 1 g N + T M g = g = 0 M H 3 q ( g ) G T M + 1 N + T M g , B i = q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 1 ) X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } , X i = T i
H q ( g ) = X ( T ) = g i = 1 M B i , lim q 1 S U M q ( N ) = S U M ( q ) , lim q 1 H q ( g ) = H ( g )

7.2. Property

Theorem 7.3. 
q 1 S U M q ( N , P S , [ 1 , 2 . . . M ] ) = i = 1 M ( K i + D i G 1 n )
Theorem 7.4. 
In S U M q ( N , [ . . . P S . . . ] , [ . . . T + 1 , T + 2 . . . T + M . . . ] ) , K i can exchange orders.
F o r m 2 is simplest, X = T M M p , 3→
Theorem 7.5. 
q p S U M q ( N ) = g = 0 M H 1 q ( g ) G X + 1 + g N + X q g p = g = 0 M H 2 q ( g ) G X + 1 + g N + X + g = g = 0 M H 3 q ( g ) G X + M + 1 N + X + M g q g p
Definition 17. 
n q = q n G 1 n , n q + = q n G 1 n , n q ! = n q . . . 2 q 1 q , 0 q ! = 0 , n q + ! i s s i m i l a r
F o r m 2
Theorem 7.6. 
S U M q ( N , [ L 1 q , L 2 q . . . L Q q , P S ] , [ L 1 , L 2 . . . L Q , P T ] ) = i = 1 Q L i q S U M q ( N , P S , P T ) , T 1 can great than 1, T i N
Theorem 7.7. 
S U M q ( N , [ T 1 q , T 2 q . . . T M q ] , [ T 1 , T 2 . . . T M ] ) = i = 1 M T i q G T M + 1 N + T M
By definition and 4
Theorem 7.8. 
I n H q ( g ) , X i K q X T = G M g M = G g M , X T = n u m b e r o f { X 1 , X 2 . . . X i } T
Induction →:
Theorem 7.9. 
P T = [ 1 , 2 . . . . M ] , q 2 g + 1 H 1 q ( g ) = q 2 g + 1 k = g M H 2 q ( k ) G g k
Theorem 7.10. 
H 1 q ( 0 ) = k = 0 M H 2 q ( k )
Except for 7.9 and 7.10, other situations are relatively complex and no conclusions similar to 2.1 have been drawn.

7.3. Application

Theorem 7.11. 
0 λ 1 λ 2 . . . λ M N q λ 1 + λ 2 + . . . + λ M = G M N + M = G N N + M [7]
Proof. 
S U M q ( N , [ 1 , 1 . . . 1 ] : 0 , [ 1 , 3 . . . 2 M 1 ] ) H 2 q ( g > 0 ) = 0 , H 2 q ( 0 ) = 1 λ M = 0 N 1 q λ M . . . λ 1 = 0 λ 2 q λ 1 = G M N + M 1
Theorem 7.12. 
1 λ 1 < λ 2 < . . . < λ M N q λ 1 + λ 2 + . . . + λ M = q 2 M + 1 g = 0 M ( 1 ) g q g 2 2 g M q 2 M N + M g q 1 2
Proof. 
S U M q ( N , [ q 2 : ( q 1 ) q 2 , q 4 : ( q 1 ) q 4 . . . q 2 M : ( q 1 ) q 2 M ] , [ 1 , 3 . . . 2 M 1 ] ) = g = 0 M H 3 q ( g ) G 2 M N + 2 M 1 g
= λ M = 0 N 1 q 2 ( λ M + M ) . . . λ 2 = 0 λ 3 q 2 ( λ 2 + 2 ) λ 1 = 0 λ 2 q 2 ( λ 1 + 1 ) = 1 λ 1 < λ 2 < . . . < λ M N + M 1 q 2 ( λ 1 + λ 2 + . . . + λ M ) = *
B i = q X T 1 ( K i + G 1 X T 1 D i ) = q X T 1 ( q 2 i + G 1 X T 1 q 2 i ( q 1 ) ) = q 2 X T 1 + 2 i = q 2 i + 2 X T , X i = K i q 1 + X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } = q 2 i + 1 + 2 X T 1 = q 1 + 2 i + 2 X T , X i = T i
H 3 q ( g ) = ( 1 ) g q 2 ( 1 + 2 + . . . + M ) + 2 ( 1 + 2 + . . . + g ) g q 2 X T = ( 1 ) g q M ( M + 1 ) + g 2 g M q 2
* = q M ( M + 1 ) g = 0 M ( 1 ) g q g 2 g M q 2 G 2 M N + 2 M 1 g
Theorem 7.13. 
G M + 1 N + M = q 2 M + 1 g = 0 M [ q 2 g + 1 + g ( M + 1 ) 1 λ 1 < λ 2 < . . . < λ M g M q λ 1 + λ 2 + . . . + λ M g ] G 1 + g N
Proof. 
S U M q ( N , [ 1 q , 2 q . . . M q ] , [ 1 , 2 . . . M ] ) = M q ! G M + 1 N + M
= S U M q ( N , [ M q . . . 2 q , 1 q ] , [ 1 , 2 . . . M ] ) = g = 0 M H 1 q ( g ) G 1 + g N
B i = K i + G 1 X T 1 = q ( M + 1 i ) G 1 M + 1 i + G 1 X T 1 = q X T 1 q ( M + 1 i ) q 1 = q ( M + 1 i ) G 1 M + 1 i + X T 1 = q ( M + 1 i ) G 1 M X K 1 , X i = K i q 1 + X T 1 G 1 T i X k 1 = q 1 + X T 1 G 1 i X k 1 = q 1 + X T 1 G 1 1 + X T 1 , X i = T i
H 1 q ( g , T ) = g q + ! , H 1 q ( g , K ) = G 1 M G 1 M 1 . . . G 1 g + 1 q ( M + 1 ) ( M g ) 1 λ 1 < λ 2 < . . . < λ M g M q λ 1 + λ 2 + . . . + λ M g
H 1 q ( g , T ) M q ! = q 2 g + 1 q ( M + 1 ) ( M g ) 1 λ 1 < . . . < λ M g M q λ 1 + . . . + λ M g q ( 1 + 2 + . . . + M )
e g : G 4 n + 3 = q 12 G 4 n + q 5 ( q 1 + q 2 + q 3 ) G 3 n + q 1 ( q 1 q 2 + q 1 q 3 + q 2 q 3 ) G 2 n + q 6 ( q 1 q 2 q 3 ) G 1 n
Definition 18. 
E q M N = 1 λ 1 < . . . < λ M N G 1 λ 1 . . . G 1 λ M = S 2 q ( N + M , N )
Theorem 7.14. 
( G 1 N ) M = ( 1 + q + . . . + q n 1 ) M = g = 1 M g q + ! S 2 q ( M , g ) G g N q g
Proof. 
q 1 S U M ( N , [ 1 q , 1 q . . . 1 q ] , [ 1 , 2 . . . M ] ) = ( 1 q + q n 1 q 1 ) = q M ( G 1 n + 1 ) M = q M ( G 1 N ) M
= q 1 q 1 S U M ( N , [ 1 q , 1 q . . . 1 q ] , [ 2 , 3 . . . M ] ) = q 1 g = 0 M 1 H 1 q ( g ) G 1 + g N q g
B i = q 1 + G 1 X T 1 = q 1 G 1 1 + X T 1 , X i K q 1 + X T 1 G 1 ( i + 1 ) X K 1 = q X T G 1 1 + X T , X i T
H 1 q ( g , T ) = q ( g + 1 ) ( g + 1 ) q + ! , H 1 q ( g , K ) = q ( M 1 g ) E q M 1 g g + 1
( G 1 N ) M = q M 1 g = 0 M 1 q ( g + 1 ) ( g + 1 ) q + q ( M 1 g ) S 2 q ( M , g + 1 ) ! G 1 + g N q g
S U M q ( N , [ K i + 1 : D i ( q 1 ) ] , [ 1 , 2 . . . M ] )
Theorem 7.15. 
n = 0 N 1 q n i = 1 M ( K i + D 1 q n ) = g = 0 M H 1 q ( g ) G 1 + g N , B i = K i + q X T D i , X i K q X T ( q X T 1 ) D i , X i T
induction →
Theorem 7.16. 
n = 0 N 1 i = 1 M ( K i + D 1 q n ) = g = 1 M f ( g ) G g N + N K i , f ( g ) = B i = 1 , X i T , X T 1 = 0 q X T 1 ( q X T 1 1 ) D i , X i T , X T 1 > 0 K i , X i K , X T 1 = 0 K i + q X T 1 1 D i , X i K , X T 1 > 0
Theorem 7.17. 
q M n = [ 1 ] g = 0 M G g M i = 0 g 1 ( q n q i ) = [ 2 ] q M g = 0 M q g g M q 1 i = 1 g ( q n q i ) = [ 3 ] g = 0 M G g M ( 1 ) g q 2 g G M n + M g
Proof. 
q M n = q 1 S U M ( N , [ 1 , 1 . . . 1 ] : q 1 , [ 1 , 2 . . . M ] )
= g = 0 M H 1 q ( g ) G g n q g = g = 0 M H 2 q ( g ) G g n + g = g = 0 M H 3 q ( g ) G M n + M g q g
B i = 1 + G 1 X T 1 ( q 1 ) = q X T 1 = q X T , X i K q 1 + X T 1 G 1 i X K 1 ( q 1 ) = q X T ( q X T 1 ) , X i T , H 1 q ( g , T ) = ( q 1 ) g g q + ! , H 1 q ( g , K ) = G g M [ 1 ]
B i = q ( 1 + X T 1 ) = q 1 q X T , X K q ( 1 + X T 1 ) ( q 1 + X T 1 1 ) , X T , H 2 q ( g , T ) = ( q 1 ) g g q ! , H 2 q ( g , K ) = q ( M g ) g M q 1 [ 2 ]
B i = q X T 1 = q X T , X K q 1 + X T 1 = q X T , X T , H 3 q ( g , T ) = ( 1 ) g 2 g + 1 , H 3 q ( g , K ) = G g M [ 3 ]
Theorem 7.18. 
k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 q k 1 + k 2 + . . . + k r q p S U M q ( k 1 , P S , P T ) = q p r S U M q ( N , P S , P T )
Theorem 7.19. 
k x = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 q k 1 + k 2 + . . . + k x q 1 S U M q ( k r , P S , [ 1 , 2 . . . M ] ) = q x r S U M q ( N , P S , [ T i = i + ( r 1 ) ] )
Theorem 7.20. 
( K + q D ) M = ( q 1 ) D g = 0 M 1 ( K + D ) g ( K + q D ) M 1 g + ( K + D ) M
Proof. 
P S = [ K + D , K + D . . . K + D ] : ( q 1 ) D , P T = [ 1 , 2 . . . M ]
B i = K + D q X T , X K q X T ( q X T 1 ) D , X T , H 1 q ( 1 ) = q 1 ( q 1 1 ) D a + b = M 1 , a , b 0 ( K + D ) a ( K + q D ) b , H 1 q ( 0 ) = ( K + D ) M
S U M q 2 S U M q 1 = H 1 q ( 1 ) + H 1 q ( 0 ) G 1 2 H 1 q ( 0 ) = H 1 q ( 1 ) + q H 1 q ( 0 )
= q i = 1 M ( K + D + G 1 1 ( q 1 ) D ) = q ( K + q D ) M

7.4. Matrix of S U M q ( N )

Similar to Section "Matrix of SUM(N)",Let P = N + T M M , Q = N 1 ,define A q ( P , Q , M ) , respectively corresponding to the three forms.
A 1 q ( P , Q , M ) = G Q P G Q M P G Q + M P + M G Q P + M
A 2 q ( P , Q , M ) = G Q P G Q P + M G Q + M P + M G Q + M P + 2 M
A 3 q ( P , Q , M ) = G Q P + M G Q M P G Q + M P + 2 M G Q P + M
Theorem 7.21. 
A 2 q ( P , Q , M ) = A 2 q ( P , P Q , M ) = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 . . . G Q + M P + 2 M G M P + 2 M q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M )
Theorem 7.22. 
A 2 q ( P , 0 , M ) = q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M ) , A 2 q ( P , 1 , M ) = G M + 1 P + M q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M )
Theorem 7.23. 
A 1 , 3 q ( P , Q , M ) = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 . . . G Q + M P + 2 M G M P + 2 M q Q 2 M + 1 , A 1 , 3 q ( P , 0 , M ) = 1 , A 1 , 3 q ( P , 1 , M ) = G M + 1 P + M q 2 M + 1

8. Multi-parameter Formal Calculation

2-parameters Formal Calculation calculate nested sum of K i + 1 n D 1 , i + 2 n D 2 , i .
S U M ( N , [ K 1 ] , [ T 1 , 1 = 1 : D 1 , 1 ] , [ T 2 , 1 = 1 : D 2 , 1 ] ) = n = 0 N 1 ( K 1 + D 1 , 1 n + D 2 , 1 2 n )
S U M ( N , [ K 1 , K 2 ] , [ T 1 , 1 : D 1 , 1 , T 1 , 2 = T 1 , 1 + 2 p : D 1 , 2 ] , [ T 2 , 1 : D 2 , 1 , T 2 , 2 = T 1 , 2 : D 2 , 2 ] )
= n = 0 N 1 ( K 2 + D 1 , 2 n + D 2 , 2 2 n ) p S U M ( N , [ K 1 ] , [ T 1 , 1 : D 1 , 1 ] , [ T 2 , 1 : D 2 , 1 ] )
Recursive define S U M ( N , P S , P T 1 , P T 2 ) . There is always T i = T 1 , i = T 2 , i
Use the Form: ( K 1 + T 1 , 1 + T 2 , 1 ) ( K 2 + T 1 , 2 + T 2 , 2 ) . . . ( K M + T 1 , M + T 2 , M )
Use T 1 to represent the set { T 1 , 1 , T 1 , 2 . . . T 1 , M }, T 2 to represent the set { T 2 , 1 , T 2 , 2 . . . T 2 , M }.
Definition 19. 
X( P T 1 )=Number of { X 1 . . . X M } T 1 , X( P T 2 )=Number of { X 1 . . . X M } T 2 ,X(PT)=X( P T 1 )+2X( P T 2 )
Definition 20. 
X P T 1 =Number of { X 1 . . . X i } T 1 , X P T 2 =Number of { X 1 . . . X i } T 2 , X P T = X P T 1 + 2 X P T 2
Use induction to prove:
Theorem 8.1. 
S U M ( N , P S , P T 1 , P T 2 )
= g = 0 2 M H 1 ( g ) T M M + 1 + g N + T M M , B i = K i + X P T D 1 , i + 2 X P T D 2 , i , X i = K i ( T i i + X P T ) D 1 , i + ( T i i + X P T ) ( X P T 1 ) D 2 , i , X i = T 1 , i 2 T i i + X P T D 2 , i , X i = T 2 , i
= g = 0 2 M H 2 ( g ) T M M + 1 + g N + T M M + g , B i = K i ( T i i + X P T + 1 ) D 1 , i + 2 T i i + X P T + 2 D 2 , i , X i = K i ( T i i + X P T ) D 1 , i ( T i i + X P T ) ( T i i + X P T + 1 ) D 2 , i , X i = T 1 , i 2 T i i + X P T D 2 , i , X i = T 2 , i
= g = 0 2 M H 3 ( g ) T M + M + 1 N + T M + M g , B i = K i + X P T 1 D 1 , i + 2 X P T 1 D 2 , i , X i = K i 2 K i + ( T i + i 1 2 X P T 1 ) D 1 , i + ( T i + i X P T 1 ) D 2 , i , X i = T 1 , i K i ( T i + i 1 X P T 1 ) D 1 , i + 2 T i + i X P T 1 D 2 , i , X i = T 2 , i
According to this way, it can be extended to multi-parameter S U M ( N ) and S U M q ( N ) .This formula is very complex and has not been studied in terms of analysis yet.

9. A theorem of symmetry

In this section, T i i .
From 2.12 H 1 ( g , P T , P T ) = i = 1 M T i g M = i = 1 M T i g , M g M .Promoted it:
The Set { T 1 , T 2 . . . T M } come from p Source: S 1 , S 2 . . . S p , T i S j m e a n s T i c o m e f r o m s o u r e j
Definition 21. 
D i f f ( S x , S x ) = 0 , D i f f ( S x , S y ) = D i f f ( S y , S x ) = 1 , x y
Definition 22. 
D i f f ( T i , T j ) = D i f f ( S x , S y ) , T i S x , T j S y
Definition 23. 
W ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . . T M ] ) = g 1 + g 2 + . . . + g p = M , g i 0 i = 1 M ( T i + j < i D i f f ( T j , T i ) )
In set T, g 1 come from S 1 , g 2 comes from S 2 ..., g M comes from S M
[1] has proved:
Theorem 9.1. 
W ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . . T M ] ) = i = 1 M T i g 1 , g 2 , . . . , g M M
Promote to Gaussian coefficient:
Definition 24. 
W q ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . . T M ] ) = g 1 + g 2 + . . . + g p = M , g i 0 i = 1 M G 1 T i + j < i D i f f ( T j , T i ) q j < i , D i f f ( T j , T i ) = 1 1
Definition 25. 
G g 1 , g 2 . . . g p M = ( q M 1 ) ( q M 1 1 ) . . . ( q 1 1 ) i = 0 p ( q g i 1 ) ( q g i 1 1 ) . . . ( q i 1 ) , g 1 + g 2 + . . . + g p = M
Theorem 9.2. 
W q ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 . . . g p M , T i i
Proof. 
When g=2,it clearly holds when M=1 or g 1 =0 or g 1 =M.
when M=2: G 1 T 1 G 2 T 2 + 1 + G 1 T 1 G 2 T 2 1 q = G 1 T 1 G 1 T 2 G 1 2
When M+1,prove by induction,PT1=[PT, T M + 1 ]
W q ( g 1 , g 2 + 1 , P T 1 ) = W q ( g 1 , g 2 , P T ) G 1 T M + 1 + g 1 + W q ( g 1 1 , g 2 + 1 , P T ) G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1
= ( i = 1 M G 1 T i ) G g 1 , g 2 M G 1 T M + 1 + g 1 + ( i = 1 M G 1 T i ) G g 1 1 , g 2 + 1 M G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1
Just need to prove:
G g 1 M G 1 T M + 1 + g 1 + G g 1 1 M G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1 = G 1 T M + 1 G g 1 M + 1 = G 1 T M + 1 ( q g 1 G g 1 M + G g 1 1 M ) ( * )
G 1 T M + 1 ( q g 1 G g 1 M + G g 1 1 M ) × ( q M g 1 + 1 1 ) G g 1 M = G 1 T M + 1 ( q g 1 ( q M g 1 + 1 1 ) + ( q g 1 1 ) )
= ( q T M + 1 1 + . . . + q + 1 ) ( q M + 1 1 ) ( 1 )
L e f t × ( q M g 1 + 1 1 ) G g 1 M = ( q M g 1 + 1 1 ) G 1 T M + 1 + g 1 + ( q g 1 1 ) G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1
= ( q M g 1 + 1 1 ) ( q T M + 1 + g 1 1 + . . . + q + 1 ) + ( q g 1 1 ) ( q T M + 1 1 + . . . + q M g 1 + 2 + q M g 1 + 1 ) = ( 2 )
( 1 ) ( 2 ) = 0 It’s holds when g=2.
W q ( g 1 , g 2 + g 3 , [ T 1 , T 2 . . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 + g 3 g 1 + g 2 + g 3
Every product has g 2 + g 3 factors come from S o u r c e 2 ,divide them to g 2 × S o u r c e 2 + g 3 × S o u r c e 3
g 1 -factors are invariant, g 2 + g 3 )-factors are variant.
( v a r i a n t f a c t o r s ) = W q ( g 2 , g 3 , [ X 1 , X 2 . . . . X g 2 + g 3 ] ) = i = 1 g 2 + g 3 G 1 X i G g 2 , g 3 g 2 + g 3
W q ( g 1 , g 2 , g 3 , [ T 1 , T 2 . . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 + g 3 g 1 + g 2 + g 3 G g 2 , g 3 g 2 + g 3 = ( i = 1 M G 1 T i ) G g 1 , g 2 , g 3 g 1 + g 2 + g 3

References

  1. Ji, P. Subdivide the Shape of Numbers and a Theorem of Ring. Open Access Library Journal 2020, 7, 1–14. [Google Scholar] [CrossRef]
  2. Ji, P. Redefining the Shape of Numbers and Three Forms of Calculation. Open Access Library Journal 2021, 8, 1–22. [Google Scholar] [CrossRef]
  3. Ji, P. Further Study of the Shape of the Numbers and More Calculation Formulas. Open Access Library Journal 2021, 8, 1–27. [Google Scholar] [CrossRef]
  4. Ji, P. Application and Popularization of Formal Calculation. Open Access Library Journal 2022, 9, 1–21. [Google Scholar] [CrossRef]
  5. Deng-Ji, Q. A New Explicit Expression for the Eulerian Numbers. Journal of Qingdao University of Science and Technology: Natural Science Edition 2012, 33, 439–440. [Google Scholar]
  6. Deng-Ji, Q. Associated Stirling number of the first kind. Journal of Qingdao University of Science and Technology: Natural Science Edition 2015, 36. [Google Scholar]
  7. Butler, S.; Karasik, P. A note on nested sums. Journal of Integer Sequences 2010, 13. [Google Scholar]
  8. Gould, H. Combinatorial Identites. From the seven unpublished manuscript of H.W. Gould. Edited by Jocelyn Quaintance 2010. [Google Scholar]
  9. Xiong, T.; Tsao, H.P.; Hall, J.I. General Eulerian Numbers and Eulerian Polynomials. Hindawi Publishing Corporation Journal of Mathematics 2015, 18. [Google Scholar] [CrossRef]
  10. Wünsche, A. Generalized Eulerian Numbers. Advances in Pure Mathematics 2018, 8, 335–361. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated