Submitted:
27 April 2023
Posted:
28 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The ITALUNG (Italy Lung Screening) Randomised Trial
2.1. Design
2.2. Recruitment
2.3. Structure
2.3 Radiological Operative Aspects
2.4. Lung Nodules and Cancers in LDCT
2.5. Main Outcomes
2.6. Smoking-Related Comorbidities
2.7. Smoking Cessation
2.8. Risk of Exposition to Ionizing Radiations in LDCT Screening
2.9. Role of Biomarkers
3. Open Questions
3.1. Design
3.2. Recruitment
3.3. Strcture
3.4. Radiological Operative Aspects
3.5. Lung Nodules and Cancers in LDCT
3.6. Main Outcomes
3.7. Smoking-Related Comorbidities
3.8. Smoking Cessation
3.9. Risk of Exposition to Ionizing Radiations in LDCT Screening
3.10. Role of Biomarkers
4. Artificial Intelligence and LC Screening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray:, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Chi, S.A.; Yu, H.; Choi, Y.L.; Park, S.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Ahn, M.J.; Choi, D.H.; Kim, K.; et al. Trends in Survival Rates of Non-Small Cell Lung Cancer with Use of Molecular Testing and Targeted Therapy in Korea, 2010-2020. JAMA Netw Open. 2023, 6, e232002. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. 2021. Available online: https://seer.cancer.gov/ statfacts/html/lungb.html (accessed on 30 June 2022).
- Frost, J.K.; Ball, W.C. Jr.; Levin, M.L.; Tockman, M.S.; Baker, R.R.; Carter, D.; Eggleston, J.C.; Erozan, Y.S.; Gupta, P.K.; Khouri, N.F.; et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis. 1984, 130, 549–554. [Google Scholar] [PubMed]
- Kubik, A.; Parkin, D.M.; Khlat, M.; Erban, J.; Polak, J.; Adamec, M. Lack of benefit from semi-annual screening for cancer of the lung: follow-up report of a randomized controlled trial on a population of high-risk males in Czechoslovakia. Int J Cancer. 1990, 45, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Marcus, P.M.; Bergstralh, E.J.; Fagerstrom, R.M.; Williams, D.E.; Fontana, R.; Taylor, W.F.; Prorok, P.C. Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J Natl Cancer Inst. 2000, 92, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Oken, M.M.; Hocking, W. .; Kvale, P.A.; Andriole, G.L.; Buys, S.S.; Church, T.R.: Crawford, E.D.; Fouad, M.N.; Isaacs, C.; et al. Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA. 2011, 306, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Eguchi, K.; Ohmatsu, H.; Kakinuma, R.; Naruke, T.; Suemasu, K.; Moriyama, N. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996, 201, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Sone, S.; Takashima, S.; Li, F.; Yang, Z.; Honda, T.; Maruyama, Y.; Hasegawa, M.; Yamanda, T.; Kubo, K.; Hanamura, K. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet. 1998, 351, 1242–1245. [Google Scholar] [CrossRef]
- Henschke, C.I.; McCauley, D.I.; Yankelevitz, D.F.; Naidich, D.P.; McGuinness, G.; Miettinen, O.S.; Libby, D.M.; Pasmantier, M.W.; Koizumi, J.; Altorki, N.K.; et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999, 354, 99–105. [Google Scholar] [CrossRef]
- Henschke, C.I.; Naidich, D.P.; Yankelevitz, D.F.; McGuinness, G.; McCauley, D.I.; Smith, J.P.; Libby, D.; Pasmantier, M.; Vazquez, M.; Koizumi, J.; et al. Early lung cancer action project: initial findings on repeat screenings. Cancer. 2001, 92, 153–159. [Google Scholar] [CrossRef]
- Henschke, C.I.; Yip, R.; Shaham, D.; Zulueta, J.J.; Aguayo, S.M.; Reeves, A.P.; Jirapatnakul, A.; Avila, R.; Moghanaki, D.; Yankelevitz, D.F. ; I-ELCAP Investigators. The Regimen of Computed Tomography Screening for Lung Cancer: Lessons Learned Over 25 Years From the International Early Lung Cancer Action Program. J Thorac Imaging. 2021; 36, 6–23. [Google Scholar]
- Veronesi, G.; Maisonneuve, P.; Rampinelli, C.; Bertolotti, R.; Petrella, F.; Spaggiari, L.; Bellomi. M. Computed tomography screening for lung cancer: results of ten years of annual screening and validation of cosmos prediction model. Lung Cancer. 2013, 82, 426–4230. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team; Aberle, D. R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research Team. Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J Thorac Oncol. 2019, 14, 1732–1742. [Google Scholar] [CrossRef]
- Pedersen, J.H.; Ashraf, H.; Dirksen, A.; Bach, K.; Hansen, H.; Toennesen, P.; Thorsen, H.; Brodersen, J.; Skov, B.G.; Døssing, M.; et al. The Danish randomized lung cancer CT screening trial--overall design and results of the prevalence round. J Thorac Oncol. 2009, 4, 608–614. [Google Scholar] [CrossRef]
- Blanchon, T.; Bréchot, J.M.; Grenier, P.A.; Ferretti, G.R.; Lemarié, E.; Milleron, B.; Chagué, D.; Laurent, F.; Martinet, Y.; Beigelman-Aubry, C.; et al. Baseline results of the Depiscan study: a French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer. 2007, 58, 50–58. [Google Scholar] [CrossRef]
- Becker, N.; Motsch, E.; Gross, M.L.; Eigentopf, A.; Heussel, C.P.; Dienemann, H.; Schnabel, P.A.; Pilz, L.; Eichinger, M.; Optazaite, D.E.; et al. Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round. J Cancer Res Clin Oncol. 2012, 138, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.; Lutman, F.R.; Cavuto, S.; Brambilla, G.; Chiesa, G.; Passera, E.; Angeli, E.; Chiarenza, M.; Aranzulla, G.; Cariboni, U.; et al. Lung cancer screening with spiral CT: baseline results of the randomized DANTE trial. Lung Cancer. 2008, 59, 355–563. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, U.; Rossi, M.; Rosato, V.; Marchianò, A.; Sverzellati, N.; Morosi, C.; Fabbri, A.; Galeone, C.; Negri, E.; Sozzi, G.; et al. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur J Cancer Prev. 2012, 21, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Lopes Pegna, A.; Picozzi, G.; Mascalchi, M.; Carozzi, F.M.; Carrozzi, L.; Comin, C.; Spinelli, C.; Falaschi, F.; Grazzini, M.; Innocenti, F.; et al. Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT. Lung Cancer. 2009, 64, 34–40. [Google Scholar] [CrossRef] [PubMed]
- van Iersel, C.A.; de Koning, H.J.; Draisma, G.; Mali, W.P.; Scholten, E.T.; Nackaerts, K.; Prokop, M.; Habbema, J.D.; Oudkerk, M.; van Klaveren, R.J. Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON). Int J Cancer. 2007, 120, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Field, J.K.; Duffy, S.W.; Baldwin, D.R.; Whynes, D.K.; Devaraj, A.; Brain, K.E.; Eisen, T.; Gosney, J.; Green, B.A.; Holemans, J.A.; et al. UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening. Thorax. 2016, 71, 161–170. [Google Scholar] [CrossRef]
- EUnetHTA OTCA28 Authoring Team. Lung cancer screening in risk groups. Collaborative assessment. Diemen (The Netherlands): EUnetHTA; 2020. 252 pages. Report No. OTCA28. Available from: https://www.eunethta.
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for Lung Cancer With Low-Dose Computed Tomography: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Field, J.K.; Vulkan, D.; Davies, M.P.A.; Baldwin, D.R.; Brain, K.E.; Devaraj, A.; Eisen, T.; Gosney, J.; Green, B.A.; Holemans, J.A.; et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis. Lancet Reg Health Eur. 2021, 10, 100179. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Krist, A. H.; Davidson, K.W.; Mangione, C.M.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.; Doubeni, C.A. et al. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2021, 325, 962–970. [Google Scholar] [CrossRef]
- Picozzi, G.; Paci, E.; Lopes Pegna, A.; Bartolucci, M.; Roselli, G.; De Francisci, A.; Gabbrielli, S.; Masi, A.; Rottoli, M.L.; Carozzi, F.; et al. Screening of lung cancer with low dose spiral CT: results of a three-year pilot study and design of the randomised controlled trial “Italung-CT”. Radiol Med. 2005, 109, 17–26. [Google Scholar] [PubMed]
- Mascalchi, M.; Lopes Pegna, A.; Carrozzi, L.; Carozzi, F.; Falaschi, F.; Picozzi, G.; Paci, E. Does UKLS strategy increase the yield of screen detected lung cancers? A comparison with ITALUNG. Thorax. 2016, 71, 950–951. [Google Scholar] [CrossRef] [PubMed]
- Raji, O.Y.; Duffy, S.W.; Agbaje, O.F.; Baker, S.G.; Christiani, D.C.; Cassidy, A.; Field, J.K. Predictive accuracy of the Liverpool Lung Project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study. Ann Intern Med. 2012, 157, 242–250. [Google Scholar] [CrossRef]
- Pistelli, F.; Aquilini, F.; Falaschi, F.; Puliti, D.; Ocello, C.; Lopes Pegna, A.; Carozzi, F.M.; Picozzi, G.; Zappa, M.; Mascalchi, M.; et al. Smoking Cessation in the ITALUNG Lung Cancer Screening: What Does “Teachable Moment” Mean? Nicotine Tob Res. 2020, 22, 1484–1491. [Google Scholar] [CrossRef]
- Lopes Pegna, A.; Picozzi, G.; Falaschi, F.; Carrozzi, L.; Falchini, M.; Carozzi, F.M.; Pistelli, F.; Comin, C.; Deliperi, A.; Grazzini, M.; et al. Four-year results of low dose CT screening and nodule management in the ITALUNG trial. J Thorac Oncol. 2013, 8, 866–875. [Google Scholar] [CrossRef]
- Mascalchi, M.; Mazzoni, L.N.; Falchini, M.; Belli, G.; Picozzi, G.; Merlini, V.; Vella, A.; Diciotti, S.; Falaschi, F.; Lopes Pegna, A.; et al. Dose exposure in the ITALUNG trial lung cancer screening with low-dose CT. Brit J Radiol. 2012, 85, 1134–1139. [Google Scholar] [CrossRef]
- Bellotti, R.; De Carlo, F.; Gargano, G.; Tangaro, S.; Cascio, D.; Catanzariti, E.; Cerello, P.; Cheran, S.C.; Delogu, P.; De Mitri, I.; et al. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model. Med Phys. 2007, 34, 4901–4910. [Google Scholar] [CrossRef]
- Golosio, B.; Masala, G.L.; Piccioli, A.; Oliva, P.; Carpinelli, M.; Cataldo, R.; Cerello, P.; De Carlo, F.; Falaschi, F.; Fantacci, M.E.; et al. A novel multithreshold method for nodule detection in lung CT. Med Phys. 2009, 36, 3607–3618. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, G.; Tommasi, E.; Agrusti, A.; Cataldo, R.; De Mitri, I.; Favetta, M.; Maglio, S.; Massafra, A.; Quarta, M.; Torsello, M.; et al. Automatic lung segmentation in CT images with accurate handling of the hilar region. J Digit Imaging. 2011, 24, 11–27. [Google Scholar] [CrossRef]
- Oudkerk, M.; Devaraj, A.; Vliegenthart, R.; Henzler, T.; Prosch, H.; Heussel, C.P.; Bastarrika, G.; Sverzellati, N.; Mascalchi, M.; Delorme, S.; et al. European Position Statement on Lung Cancer Screening. Lancet Oncol 2017, 18, e754–66. [Google Scholar] [CrossRef]
- Kauczor, H.U.; Baird, A.M.; Blum, T.G.; Bonomo, L.; Bostantzoglou, C.; Burghuber, O.; Čepická, B.; Comanescu, A.; Couraud, S.; Devaraj, A.; et al. ESR/ERS statement paper on lung cancer screening. Eur Radiol. 2020, 30, 3277–3294. [Google Scholar] [CrossRef]
- Diciotti, S.; Picozzi, G.; Falchini, M.; Mascalchi, M.; Villari, N; Valli, G. 3D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed. 2008, 12, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Diciotti, S.; Lombardo, S.; Coppini, G.; Grassi, L.; Falchini, M.; Mascalchi, M. The LoG characteristic scale: a consistent indicator of lung nodule size in CT imaging. IEEE Trans Med Imaging. 2010, 29, 397–409. [Google Scholar] [CrossRef]
- Diciotti, S.; Lombardo, S.; Falchini, M.; Picozzi, G.; Mascalchi, M. Automated segmentation of small lung nodules in CT scans by local shape analysis. IEEE Trans Biomed Engin. 2011, 58, 3418–3428. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, G.; Diciotti, S.; Falchini, M.; Foresti, S.; Gallesi, F.; Cavigli, E.; Livi, L.; Villari, N.; Mascalchi, M. Operator-dependent reproducibility of size measurements of small phantoms and lung nodules examined with low dose thin-section CT. Invest Radiol. 2006, 41, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Picozzi, G.; Falchini, M.; Vella, A.; Diciotti, S.; Carrozzi, L.; Lopes Pegna, A.; Falaschi, F. Initial LDCT appearance of screen-detected lung cancers in the ITALUNG trial. Eur J Radiol. 2014, 83, 2080–2086. [Google Scholar] [CrossRef]
- Mascalchi, M.; Attinà, D.; Bertelli, E.; Falchini, M.; Vella, A.; Comin, C.; Lopes Pegna, A.; Ambrosini, V.; Zompatori, M. Lung cancer associated with cystic airspaces. Morphological features. J Comput Assist Tomogr. 2015, 39, 102–108. [Google Scholar] [CrossRef]
- Mascalchi, M. Lung Cancer Associated with Cystic Airspaces in the Screening Perspective. Ann Surg Oncol. 2020, 27 (Suppl 3), 960–961. [Google Scholar] [CrossRef]
- Mascalchi, M.; Comin, C.E.; Bertelli, E.; Sali, L.; Maddau, C.; Zuccherelli, S.; Picozzi, G.; Carrozzi, L.; Grazzini, M.; Fontanini, G.; et al. ITALUNG Study Research Group. Screen-detected multiple primary lung cancers in the ITALUNG trial. J Thor Dis. 2018, 10, 1058–1066. [Google Scholar] [CrossRef]
- Mascalchi, M.; Sali, L. Risk of second lung cancer in ITALUNG LDCT screening. J Thor Oncol. 2018, 13, e105–e106. [Google Scholar] [CrossRef]
- Mendoza, D.P.; Heeger, A.; Mino-Kenudson, M.; Lanuti, M.; Shepard, J.O.; Sequist, L.V.; Digumarthy, S.R. Clinicopathologic and Longitudinal Imaging Features of Lung Cancer Associated With Cystic Airspaces: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol. 2021, 216, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.O.; Cham, M.; Zhang, L.; Beasley, M.B.; Austin, J.H.; Miller, A.; Zulueta, J.J.; Roberts, H.; Enser, C.; Kao, S.J.; et al. Lung cancer associated with cystic airspaces. AJR Am J Roentgenol. 2012, 199, 781–786. [Google Scholar] [CrossRef]
- Johnson, B.E. Second lung cancers in patients after treatment for an initial lung cancer. J Natl Cancer Inst. 1998, 90, 1335–1345. [Google Scholar] [CrossRef]
- Mascalchi, M.; Zompatori, M. Mediastinal lymphadenopathy in lung cancer screening with LDCT. A red flag. Radiology. 2022, 302, 695–696. [Google Scholar] [CrossRef] [PubMed]
- Paci, E.; Puliti, D.; Lopes Pegna, A.; Carrozzi, L.; Picozzi, G.; Falaschi, F.; Pistelli, F.; Aquilini, F.; Ocello, C.; Zappa, M.; et al. Mortality, survival and incidence rates in the ITALUNG randomized lung cancer screening trial. Thorax. 2017, 72, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Puliti, D.; Mascalchi, M.; Carozzi, M.F.; Carrozzi, L.; Falaschi, F.; Paci, E.; Lopes Pegna, A.; Aquilini, F.; Barchielli, A.; Bartolucci, M.; et al. Decreased cardiovascular mortality in the ITALUNG lunc cancer screening trial: analysis of the underlying factors. Lung Cancer. 2019, 138, 72–78. [Google Scholar] [CrossRef]
- Puliti, D.; Picozzi, G.; Gorini, G.; Carrozzi, L.; Mascalchi, M. Gender effect in the ITALUNG screening trial. Comparison with UKLS and other trials. Lancet Reg Health Eur. 2022, 13, 100300. [Google Scholar] [CrossRef] [PubMed]
- Marcus, P.M.; Bergstralh, E.J.; Zweig, M.H.; Harris, A.; Offord, K.P.; Fontana, R.S. Extended lung cancer incidence follow-up in the Mayo Lung Project and overdiagnosis. J Natl Cancer Inst. 2006, 98, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Paci, E.; Puliti, D.; Carozzi, F.M.; Carrozzi, L.; Falaschi, F.; Pegna, A.L.; Mascalchi, M.; Picozzi, G.; Pistelli, F.; Zappa, M. Prognostic selection and long-term survival analysis to assess overdiagnosis risk in lung cancer screening randomized trials. J Med Screen. 2021, 28, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Patz, E.F. Jr, Pinsky, P.; Gatsonis, C.; Sicks, J.D.; Kramer BS, Tammemägi MC, Chiles C, Black WC, Aberle DR; NLST Overdiagnosis Manuscript Writing Team. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med. 2014 Feb 1;174(2):269-74. Erratum in: JAMA Intern Med. 2014 May;174(5):828.
- Murawski, M.; Walter, J.; Schwarzkopf, L. Assessing the lung cancer comorbidome: An analysis of German claims data. Lung Cancer. 2019, 127, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Ruparel, M.; Quaife, S.L.; Dickson, J. .; Horst, C.; Burke, S.; Taylor, M.; Ahmed, A.; Shaw, P.; Soo, M.J. et al. Evaluation of cardiovascular risk in a lung cancer screening cohort. Thorax. 2019, 74, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Christodoulou, E.; Motsch, E.; Katzke, V.; Wielpütz, M.O.; Kauczor, H.U.; Heussel, C.P.; Eichinger, M.; Delorme, S. Lung function impairment in the German Lung Cancer Screening Intervention Study (LUSI): prevalence, symptoms, and associations with lung cancer risk, tumor histology and all-cause mortality. Transl Lung Cancer Res. 2022, 11, 1896–1911. [Google Scholar] [CrossRef]
- Silva, M.; Picozzi, G.; Sverzellati, N.; Anglesio, S.; Bartolucci, M.; Cavigli, E.; Deliperi, A.; Falchini, M.; Falaschi, F.; Ghio, D. Low-dose CT for lung cancer screening: position paper from the Italian college of thoracic radiology. Radiol Med. 2022, 127, 543–559. [Google Scholar] [CrossRef]
- Orlandi, I.; Moroni, C.; Camiciottoli, G.; Bartolucci, M.; Pistolesi, M.; Villari, N.; Mascalchi, M. Chronic Obstructive Pulmonary Disease: thin-section CT measurement of airway wall thickness and lung attenuation. Radiology. 2005, 234, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Camiciottoli, G.; Diciotti, S. Lung densitometry: why, how and when. J Thorac Dis. 2017, 9, 3319–3345. [Google Scholar] [CrossRef]
- Diciotti, S.; Nobis, A.; Ciulli, S.; Landini, N.; Mascalchi, M.; Sverzellati, N.; Innocenti, B. Simulation of low attenuation areas in CT imaging for pulmonary emphysema quantification through a finite element model: development of digital phantoms. Int J Comput Assist Radiol Surg. 2017, 12, 1561–1570. [Google Scholar] [CrossRef]
- Cavigli, E.; Camiciottoli, G.; Diciotti, S.; Orlandi, I.; Spinelli, C.; Meoni, E.; Grassi, L.; Farfalla, C.; Pistolesi, M.; Falaschi, F.; et al. Whole-lung densitometry vs visual assessment of emphysema. Eur Radiol. 2009, 19, 1686–1692. [Google Scholar] [CrossRef]
- Mascalchi, M.; Diciotti, S.; Sverzellati, N.; Camiciottoli, G.; Ciccotosto, C.; Falaschi, F.; Zompatori, M. Low agreement of visual rating for detailed quantification of pulmonary emphysema in whole-lung CT. Acta Radiol. 2012, 53, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Camiciottoli, G.; Cavigli, E.; Grassi, L.; Diciotti, S.; Orlandi, I.; Zappa, M.; Picozzi, G.; Lopes Pegna, A.; Paci, E.; Falaschi, F.; et al. Prevalence and correlates of pulmonary emphysema in smokers and former smokers. A densitometric study in participants to the ITALUNG trial. Eur Radiol. 2009, 19, 58–66. [Google Scholar] [CrossRef]
- Mascalchi, M.; Romei, C.; Marzi, C.; Diciotti, S.; Picozzi, G.; Pistelli, F.; Zappa, M.; Paci, E.; Carozzi, F.; Gorini, G.; et al. Pulmonary emphysema and coronary artery calcifications at baseline LDCT and long-term mortality in smokers and former smokers of the ITALUNG screening trial. Eur Radiol. 2023, 33, 3115–3123. [Google Scholar] [CrossRef] [PubMed]
- Diciotti, S.; Sverzellati, N.; Kauzcor, H.U.; Lombardo, S.; Falchini, M.; Favilli, G.; Macconi, L.; Kuhnigk, J.M.; Marchianò, A.; Pastorino, U.; et al. Defining the intra-subject variability of whole-lung CT densitometry in two lung cancer screening trials. Acad Radiol. 2011, 18, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Sverzellati, N.; Falchini, M.; Favilli, G.; Lombardo, S.; Macconi, L.; Paci, E.; Lopes Pegna, A.; Falaschi, F.; Zompatori, M.; et al. Changes of volume-corrected whole-lung density in smokers and former smokers during the ITALUNG screening trial. J Thorac Imaging. 2012, 27, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Castellana, R.; Conti, B.; Bemi, P.; Taliani, A.; Pistelli, F.; Karwoski, R.A.; Carrozzi, L.; De Liperi, A.; Bartholmai, B. Quantitative texture-based analysis of pulmonary parenchymal features on chest CT: comparison with densitometric indices and short-term effect of changes in smoking habit. Eur Respir J. 2022, 60, 2102618. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Puliti, D.; Romei, C.; Picozzi, G.; De Liperi, A.; Diciotti, S.; Bartolucci, M.; Grazzini, M.; Vannucchi, L.; Falaschi, F.; et al. Moderate-severe coronary calcification predicts long-term cardiovascular death in CT lung cancer screening: The ITALUNG trial. Eur J Radiol. 2021, 145, 110040. [Google Scholar] [CrossRef] [PubMed]
- Sverzellati, N.; Cademartiri, F.; Bravi, F.; Martini, C.; Gira, F.A.; Maffei, E.; Marchianò, A.; La Vecchia, C.; De Filippo, M.; Kuhnigk, J.M. Relationship and prognostic value of modified coronary artery calcium score, FEV1, and emphysema in lung cancer screening population: the MILD trial. Radiology. 2012, 262, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.; Køber, L.; Abdulla, J.; Pedersen, J.H.; Wille, M.M.; Dirksen, A.; Kofoed, K.F. Coronary artery calcification detected in lung cancer screening predicts cardiovascular death. Scand Cardiovasc J. 2015, 49, 159–167. [Google Scholar] [CrossRef]
- Brenner, D.J. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology. 2004, 231, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Belli, G.; Zappa, M.; Picozzi, G.; Falchini, M.; Della Nave, R.; Allescia, G.; Masi, A.; Pegna, A.L.; Villari, N.; et al. Risk-benefit analysis of X-ray exposure associated with lung cancer screening in the Italung-CT trial. AJR Am J Roentgenol. 2006, 187, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Rampinelli, C.; De Marco, P.; Origgi, D.; Maisonneuve, P.; Casiraghi, M.; Veronesi, G.; Spaggiari, L.; Bellomi, M. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: secondary analysis of trial data and risk-benefit analysis. BMJ. 2017, 356, j347. [Google Scholar] [CrossRef] [PubMed]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J Thorac Oncol. 2019, 14, 343–357. [Google Scholar] [CrossRef]
- Carozzi, F.M.; Bisanzi, S.; Falini, P.; Sani, C.; Venturini, G.; Lopes Pegna, A.; Bianchi, R.; Ronchi, C.; Picozzi, G.; Mascalchi, M.; et al. Molecular profile in body fluids in subjects enrolled in a randomised trial for lung cancer screening: Perspectives of integrated strategies for early diagnosis. Lung Cancer. 2010, 68, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, F.M.; Bisanzi, S.; Carrozzi, L.; Falaschi, F.; Lopes Pegna, A.; Mascalchi, M.; Picozzi, G.; Peluso, M.; Sani, C.; Greco, L.; et al. Multimodal lung cancer screening using the ITALUNG biomarker panel and low dose computed tomography. Results of the ITALUNG biomarker study. Int J Cancer. 2017, 141, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Yousaf-Khan, U.; van der Aalst, C.; de Jong, P.A.; Heuvelmans, M.; Scholten, E.; Lammers, J.W.; van Ooijen, P.; Nackaerts, K.; Weenink, C.; Groen, H. Final screening round of the NELSON lung cancer screening trial: the effect of a 2.5-year screening interval. Thorax. 2017, 72, 48–56. [Google Scholar] [CrossRef] [PubMed]
- van der Aalst, C.M.; Ten Haaf, K.; de Koning, H.J. Implementation of lung cancer screening: what are the main issues? Transl Lung Cancer Res. 2021, 10, 1050–1063. [Google Scholar] [CrossRef]
- Rustagi, A.S.; Byers, A.L.; Keyhani, S. Likelihood of Lung Cancer Screening by Poor Health Status and Race and Ethnicity in US Adults, 2017 to 2020. JAMA Netw. Open. 2022, 5, e225318. [Google Scholar] [CrossRef]
- 43. Walsh, B.; Silles, M.; O’Neill, C. The importance of socio-economic variables in cancer screening participation: a comparison between population-based and opportunistic screening in the EU-15. Health Policy. 2011, 101, 269–276. [Google Scholar] [CrossRef]
- Tanner, N.T.; Kanodra, N.M.; Gebregziabher, M.; Payne, E.; Halbert, C.H.; Warren, G.W.; Egede. L.E.; Silvestri, G.A. The Association between Smoking Abstinence and Mortality in the National Lung Screening Trial. Am J Respir Crit Care Med. 2016, 193, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, U.; Boffi, R.; Marchianò, A.; Sestini, S.; Munarini, E.; Calareso, G.; Boeri, M.; Pelosi, G.; Sozzi, G.; Silva, M.; et al. Stopping Smoking Reduces Mortality in Low-Dose Computed Tomography Screening Participants. J Thorac Oncol. 2016, 11, 693–699. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Huang, P.; Park, S.; Yan, R.; Lee, J.; Chu, L.C.; Lin, C.T.; Hussien, A.; Rathmell, J.; Thomas, B.; Chen, C.; et al. Added Value ofComputer-aided CT Image Features for Early Lung Cancer Diagnosis with Small Pulmonary Nodules: A Matched Case-Control Study. Radiology. 2018, 286, 286–295. [Google Scholar] [CrossRef] [PubMed]
- van Klaveren, R.J.; Oudkerk, M.; Prokop, M.; Scholten, E.T.; Nackaerts, K.; Vernhout, R.; van Iersel, C.A.; van den Bergh, K.A.; van ‘t Westeinde, S.; van der Aalst, C.; Thunnissen, E. Management of lung nodules detected by volume CT scanning. N Engl J Med. 2009, 361, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Soo, E.; Edey, A.J.; Mak, S.M.; Moser, J.; Mohammadi, S.; Rodrigues, T.; Duffy, S.W.; Field, J.K.; Baldwin, D.R.; Nair, A. Impact of choice of volumetry software and nodule management guidelines on recall rates in lung cancer screening. Eur J Radiol. 2019, 120, 108646. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, A.; Tammemagi, M.C.; Mayo, J.R.; Roberts, H.; Liu, G.; Soghrati, K.; Yasufuku, K.; Martel, S.; Laberge, F.; Gingras, M.; et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013, 369, 910–919. [Google Scholar] [CrossRef]
- González Maldonado, S.; Delorme, S.; Hüsing, A.; Motsch, E.; Kauczor, H.U.; Heussel, C.P.; Kaaks, R. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. JAMA Netw Open. 2020, 3, e1921221. [Google Scholar] [CrossRef]
- Bartlett, E.C.; Silva, M.; Callister, M.E.; Devaraj, A. False-Negative Results in Lung Cancer Screening-Evidence and Controversies. J Thorac Oncol. 2021, 16, 912–921. [Google Scholar] [CrossRef]
- Horeweg, N.; Scholten, E.T.; de Jong, P.A.; van der Aalst, C.M.; Weenink, C.; Lammers, J.W.; Nackaerts, K.; Vliegenthart, R.; ten Haaf, K.; Yousaf-Khan, U.A.; et al. Detection of lung cancer through low-dose CT screening (NELSON): a prespecified analysis of screening test performance and interval cancers. Lancet Oncol. 2014, 15, 1342–1350. [Google Scholar] [CrossRef]
- Scholten, E.T.; Horeweg, N.; de Koning, H.J.; Vliegenthart, R.; Oudkerk, M.; Mali, W.P.; de Jong, P.A. Computed tomographic characteristics of interval and post screen carcinomas in lung cancer screening. Eur Radiol. 2015, 25, 81–88. [Google Scholar] [CrossRef]
- Robbins, H.A.; Callister, M.; Sasieni, P.; Quaife, S.L.; Cheung, L.C.; Brennan, P.; Katki, H.A.; Berg, C.D.; Baldwin, D.; Johansson, M. Benefts and harms in the national lung screening trial: expected outcomes with a modern management protocol. Lancet Respir Med. 2019, 7, 655–656. [Google Scholar] [CrossRef] [PubMed]
- Young, R.P.; Duan, F.; Chiles, C.; Hopkins, R.J.; Gamble, G.D.; Greco, E.M.; Gatsonis, C.; Aberle, D. Airflow Limitation and Histology Shift in the National Lung Screening Trial. The NLST-ACRIN Cohort Substudy. Am J Respir Crit Care Med. 2015; 192, 1060–1067. [Google Scholar]
- Young, R.P.; Scott, R.J.; Gamble, G.D. Lung function impairment in lung cancer screening: discordance between risk and screening outcomes when looking through a PRISm. Transl Lung Cancer Res. 2022, 11, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Chiles, C.; Duan, F.; Gladish, G.W.; Ravenel, J.G.; Baginski, S.G.; Snyder, B.S.; DeMello, S.; Desjardins, S.S.; Munden, R.F.; Team, N.S. Association of coronary artery calcifcation and mortality in the national lung screening trial: a comparison of three scoring methods. Radiology. 2015, 276, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, P.F.; Lynch, D.A.; Gierada, D.S. Incidental Findings on Low-Dose CT Scan Lung Cancer Screenings and Deaths From Respiratory Diseases. Chest. 2022, 161, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- González Maldonado, S.; Motsch, E.; Trotter, A.; Kauczor, H.U.; Heussel, C.P.; Hermann, S.; Zeissig, S.R.; Delorme, S.; Kaaks, R. Overdiagnosis in lung cancer screening: Estimates from the German Lung Cancer Screening Intervention Trial. Int J Cancer. 2021, 148, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Prokop, M.; Jacobs, C.; Capretti, G.; Sverzellati, N.; Ciompi, F.; van Ginneken, B.; Schaefer-Prokop, C.M.; Galeone, C.; et al. Long-Term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. J Thorac Oncol. 2018, 13, 1454–1463. [Google Scholar] [CrossRef]
- Yip, R.; Li, K.; Liu, L.; Xu, D.; Tam, K.; Yankelevitz, D.F.; Taioli, E.; Becker, B.; Henschke, C.I. (2018) Controversies on lung cancers manifesting as part-solid nodules. Eur Radiol. 2018, 28, 747–759. [Google Scholar] [CrossRef]
- Ricciardi, S.; Booton, R.; Petersen, R.H.; Infante, M.; Scarci, M.; Veronesi, G.; Cardillo, G. Managing of screening-detected sub-solid nodules-a European perspective. Transl Lung Cancer Res. 2021, 10, 2368–2377. [Google Scholar] [CrossRef]
- Labaki, W.W.; Xia, M.; Murray, S.; Hatt, C.R.; Al-Abcha, A.; Ferrera, M.C.; Meldrum, C.A.; Keith, L.A.; Galbán, C.J.; Arenberg, D.A.; et al. Quantitative Emphysema on Low-Dose CT Imaging of the Chest and Risk of Lung Cancer and Airflow Obstruction: An Analysis of the National Lung Screening Trial. Chest. 2021, 159, 1812–1820. [Google Scholar] [CrossRef]
- Mascalchi, M.; Luconi, M. Lung Cancer Screening, Emphysema, and COPD. Chest. 2021, 159, 1699–1700. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, E.L.; Ten Haaf, K. Lung cancer screening: enhancing risk stratification and minimising harms by incorporating information from screening results. Thorax. 2019, 74, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, D.; O’Dowd, E.; Ten Haaf, K. Targeted screening for lung cancer is here but who do we target and how? Thorax. 2020, 75, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Ten Haaf, K.; van der Aalst, C.M.; de Koning, H.J.; Kaaks, R.; Tammemagi, M.C. Personalising lung cancer screening: an overview of risk-stratifcation opportunities and challenges. Int J Cancer. 2021, 149, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, A.; Jacobs, C.; Lessmann, N.; Broeders, M.J.M.; Silva, M.; Išgum, I.; de Jong, P.A.; van den Heuvel, M.M.; Sverzellati, N.; Prokop, M.; et al. Scan-based competing death risk model for re-evaluating lung cancer computed tomography screening eligibility. Eur Respir J. 2022, 59, 2101613. [Google Scholar] [CrossRef] [PubMed]
- Zeleznik, R.; Foldyna, B.; Eslami, P.; Weiss, J.; Alexander, I.; Taron, J.; Parmar, C.; Alvi, R.M.; Banerji, D.; Uno, M. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat Commun. 2021, 12, 715. [Google Scholar] [CrossRef]
- Xie, X.; Dijkstra, A.E.; Vonk, J.M.; Oudkerk, M.; Vliegenthart, R.; Groen, H.J. Chronic respiratory symptoms associated with airway wall thickening measured by thin-slice low-dose CT. AJR Am J Roentgenol. 2014, 203, W383–W390. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Graffy, P.M.; Zea, R.; Lee, S.J.; Liu, J.; Sandfort, V.; Summers, R.M. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: A retrospective cohort study. Lancet Digit. Health. 2020, 2, e192–e200. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology. Lung Cancer Screening. Version 1.2023 — October 26, 2022 https://www.nccn.org/professionals/physician_gls/pdf/lung_screening. A: Accessed, 20 April 2023.
- Moldovanu, D.; de Koning, H.J.; van der Aalst, C.M. Lung cancer screening and smoking cessation efforts. Transl Lung Cancer Res. 2021, 10, 1099–1109. [Google Scholar] [CrossRef]
- Joseph, A.M.; Rothman, A.J.; Almirall, D.; Begnaud, A.; Chiles, C.; Cinciripini, P.M.; Fu, S.S.; Graham, A.L.; Lindgren, B.R.; Melzer, A.C.; et al. Lung cancer screening and smoking cessation clinical trials. SCALE (smoking cessation within the context of lung cancer screening) Collaboration. Am J Respir Crit Care Med. 2018, 197, 172–182. [Google Scholar] [CrossRef]
- National Cancer Institute. Smoking cessation at lung examination: the SCALE Collaboration | BRP | DCCPS/NCI/NIH. Available from https:// cancercontrol.cancer.gov/brp/tcrb/scale-collaboration.html. 24 April 2023.
- Eyestone, E.; Williams, R.M.; Luta, G.; Kim, E.; Toll, B.A.; Rojewski, A.; Neil, J.; Cinciripini, P.M.; Cordon, M.; Foley, K. Predictors of Enrolment of Older Smokers in Six Smoking Cessation Trials in the Lung Cancer Screening Setting: The Smoking Cessation at Lung Examination (SCALE) Collaboration. Nicotine Tob Res. 2021, 23, 2037–2046. [Google Scholar] [CrossRef]
- Kim, E.; Williams, R.M.; Eyestone, E.; Cordon, M.; Smith, L.; Davis, K.; Luta, G.; Anderson, E.D.; McKee, B.; Batlle, J. Predictors of attrition in a smoking cessation trial conducted in the lung cancer screening setting. Contemp Clin Trials. 2021, 106, 106429. [Google Scholar] [CrossRef] [PubMed]
- Buttery, S.C.; Williams, P.; Mweseli, R.; Philip, K.E.J.; Sadaka, A.; Bartlett, E.J.; Devaraj, A.; Kemp, S.; Addis, J.; Derbyshire, J.; et al. Immediate smoking cessation support versus usual care in smokers attending a targeted lung health check: the QuLIT trial. BMJ open Respir Res. 2022, 9, e001030. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, U.; Ladisa, V.; Trussardo, S.; Sabia, F.; Rolli, L.; Valsecchi, C.; Ledda, R.E.; Milanese, G.; Suatoni, P.; Boeri, M.; Sozzi, G.; Marchianò, A.; Munarini, E.; Boffi, R.; Gallus, S.; Apolone, G. Cytisine therapy improved smoking cessation in the randomized screening and multiple intervention on lung epidemics lung cancer screening trial. J Thorac Oncol. 2022, 11, 1276–1286. [Google Scholar] [CrossRef]
- Mascalchi, M.; Sali, L. Lung cancer screening with low dose CT and harms from radiation exposure. From prediction models to cancer incidence data. Ann Transl Med. 2017, 5, 360. [Google Scholar] [CrossRef] [PubMed]
- Nagatani, Y.; Takahashi, M.; Murata, K.; Ikeda, M.; Yamashiro, T.; Miyara, T.; Koyama, H.; Koyama, M.; Sato, Y.; Moriya, H.; et al. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reductionmusing three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis. Eur J Radiol. 2015, 84, 1401–1412. [Google Scholar]
- Fujita, M.; Higaki, T.; Awaya, Y.; Nakanishi, T.; Nakamura, Y.; Tatsugami, F.; Baba, Y.; Iida, M.; Awai, K. Lung cancer screening with ultra-low dose CT using full iterative reconstruction. Jpn J Radiol. 2017, 35, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qi, W.; Sun, Y.; Jiang, Y.; Liu, X.; Hong, N. Screening for lung cancer using sub-millisievert chest CT with iterative reconstruction algorithm: Image quality and nodule detectability. Br J Radiol. 2018, 91, 20170658. [Google Scholar] [CrossRef]
- Ye, K.; Chen, M.; Li, J.; Zhu, Q.; Lu, Y.; Yuan, H. Ultra-low-dose CT reconstructed with ASiR-V using SmartmA for pulmonary nodule detection and Lung-RADS classifications compared with low-dose CT. Clin Radiol. 2021, 76, 156.e1–156.e8. [Google Scholar] [CrossRef]
- Veronesi, G.; Baldwin, D.R.; Henschke, C.I.; Ghislandi, S.; Iavicoli, S.; Oudkerk, M.; De Koning, H.J.; Shemesh, J.; Field, J.K.; Zulueta, J.J. Recommendations for Implementing Lung Cancer Screening with Low-Dose Computed Tomography in Europe. Cancers, 2020; 12. [Google Scholar]
- Ten Haaf, K.; Bastani, M.; Cao, P.; Jeon, J.; Toumazis, I.; Han, S.S.; Plevritis, S.K.; Blom, E.F.; Kong, C.Y.; Tammemägi, M.C.; et al. A Comparative Modeling Analysis of Risk-Based Lung Cancer Screening Strategies. J Natl Cancer Inst. 2020, 112, 466–479. [Google Scholar] [CrossRef]
- Pastorino, U.; Boeri, M.; Sestini, S.; Sabia, F.; Milanese, G.; Silva, M.; Suatoni, P.; Verri, C.; Cantarutti, A.; Sverzellati, N.; et al. Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate intervals in the BioMILD trial. Ann Oncol. 2022, 33, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.; Jusue-Torres, I.; Stark, A.; Chen, C.; Rodgers, K.; Lee, B.; Griffin, C.; Yang, A.; Huang, P.; Wrangle, J. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin Cancer Res. 2017, 23, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, K.K.; Schnohr, P.; Jensen, G.B.; Bojesen, S.E. AHRR (cg05575921) Methylation Safely Improves Specificity of Lung Cancer Screening Eligibility Criteria: A Cohort Study. Cancer Epidemiol Biomarkers Prev. 2022, 31, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J Thorac Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, F.M.; Bisanzi, S. Molecular biomarkers and early diagnosis of lung cancer: state of knowledge and future perspectives. Epidemiol Prev. 2016, 40(1 Suppl 1), 56–63. [Google Scholar]
- Grenier, P.A.; Brun, A.L.; Mellot, F. The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography. Diagnostics. 2022, 2022 12, 2435. [Google Scholar] [CrossRef]
- Thong, L.T.; Chou, H.S.; Chew, H.S.J.; Lau, Y. Diagnostic test accuracy of artificial intelligence-based imaging for lung cancer screening: A systematic review and meta-analysis. Lung Cancer. 2023, 176, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Schwyzer, M.; Messerli, M.; Eberhard, M.; Skawran, S.; Martini, K.; Frauenfelder, T. Impact of dose reduction and iterative reconstruction algorithm on the detectability of pulmonary nodules by artificial intelligence. Diagn Interv Imaging. 2022, 103, 273–280. [Google Scholar] [CrossRef]
- 137 Jiang, B.; Li, N.; Shi, X.; Zhang, S.; Li, J.; de Bock, G.H.; Vliegenthart, R.; Xie, X. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology. 2022, 303, 202–212. [Google Scholar] [CrossRef]
- Chassagnon, G.; De Margerie-Mellon, C.; Vakalopoulou, M.; Marini, R.; Hoang-Thi, T.N.; Revel, M.P.; Soyer, P. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol. 2023, 41, 235–244. [Google Scholar] [CrossRef]
- Hasenstab, K.A.; Yuan, N.; Retson, T.; Conrad, D.J.; Kligerman, S.; Lynch, D.A.; Hsiao, A.; COPDGene Investigators. Automated CT Staging of Chronic Obstructive Pulmonary Disease Severity for Predicting Disease Progression and Mortality with a Deep Learning Convolutional Neural Network. Radiol Cardiothorac Imaging. 2022, 3, e200477. [Google Scholar] [CrossRef] [PubMed]
- Humphries, S.M.; Notary, A.M.; Centeno, J.P.; Strand, M.J.; Crapo, J.D.; Silverman, E.K.; Lynch, D.A.; Genetic Epidemiology of COPD (COPDGene) Investigators. Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology. 2020, 294, 434–444. [Google Scholar] [CrossRef] [PubMed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| a. Design |
| Annual or biennial screening—others scheme |
| b. Recruitment population (organized) and opportunistic (self-referred) screening |
| c. Structure Single center Multicenter with centralized or peripheral LDCT reading and management |
| d. Radiological operational aspects Implementation of CAD Improvement and validatation for volumetry of non-solid nodules or components Improvement of risk scores of malignancy for incident nodules |
| e. Results of LDCT Containement of false positive tests Containment of false negative tests |
| f. Main outcomes Enahnce the decrease of LC mortality associated with LDCT screening |
| g. Smoking related comorbidities Quantification of smoking-related comorbidities and their incorporation in models of personalized LC and mortality risk |
| h. ionizing radiations in LDCT screening. Validation of Ultra Low Dose Computed Tomography |
| i. Smoking cessation optimization of engagement in smoking cessation programs within lung cancer screening optimization of type and timing of treatment (including content of communication and pharmacotherapy) |
| f. Role of biomarkers Prospective evaluation in combination with LDCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
