Submitted:
23 April 2023
Posted:
24 April 2023
You are already at the latest version
Abstract
Keywords:
MSC: 33B20; 33C20; 33B15; 33C05
1. Introduction and Preliminaries
2. Extended Horn’s Double Hypergeometric Function
2.1. Integral Representations
2.2. Transformation Formula
2.3. Recurrence Relation
2.4. Mellin Transform and Inverse Mellin Transform
2.5. Laguerre Polynomial Representation
3. Extended Exton’s Triple Hypergeometric Function
3.1. Integral Representations
3.2. Transformation Formulas
3.3. Recurrence Relation and Generating Function
4. Bounding Inequalities for and
4.1. Bounds for the Extended Functions
4.2. Bounds Obtained via Integral Representations
- For and , the following Luke’s two-sided inequalities for hold true (see [24, Theorem 16, Eq. (5.6)]):whereFor , the two-sided inequalities for Kummer’s confluent hypergeometric function easily follows:
-
Bounding inequalities for and :
- (i)
- Lommel’s bounds (see, for example, [14, pp. 31 and 406], [25], [26, pp. 548–549]);
- (ii)
- Minakshisundaram and Szász bound (see [27, Eq. (1.8)]; see also [28, pp. 36-37]; cf. [14, p. 16]);
- (iii)
- (iv)
- (v)
- Luke [24, Eq. (6.25)] gave the following inequality for the modified Bessel function :
5. Concluding Remarks
- The following differential equation is derivable from (3):
- Can other bounding inequalities for the and be given?
Author Contributions
Conflicts of Interest
References
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s Beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Temme, N.M.; Veling, E.J.M. Asymptotic and closed form of a generalized incomplete gamma function. J. Comput. Appl. Math. 1996, 67, 371–379. [Google Scholar] [CrossRef]
- MChaudhry, A.; Zubair, S.M. Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 1994, 55, 99–124. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms. J. Comput. Appl. Math. 1995, 59, 253–284. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Zubair, S.M. Extended incomplete gamma functions with applications. J. Math. Anal. Appl. 2002, 274, 725–745. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherland; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Özergin, E. Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Horn, J. Hypergeometrische Funktionen zweier Verändlichen. Math. Ann. 1931, 105, 381–407. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, New York, NY, USA, 1971. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume I. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, Second ed.; Cambridge University Press: Cambridge, London and New York, 1944. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth ed.; Cambridge University Press: Cambridge, London and New York, 1963. [Google Scholar]
- Krasikov, I. Uniform bounds for Bessel functions. J. Appl. Anal. 2006, 12, 83–91. [Google Scholar] [CrossRef]
- Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, London, and New York, 1960. [Google Scholar]
- Brychkov, Y.A.; Marichev, O.I.; Savischenko, N.V. Handbook of Mellin Transforms; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2010. [Google Scholar]
- Miller, A.R. Remarks on a generalized beta function. J. Comput. Appl. Math. 1998, 100, 23–32. [Google Scholar] [CrossRef]
- Srivastava, H.M. On transformations of certain hypergeometric functions of three variables. Publ. Math. Debrecen 1965, 12, 65–74. [Google Scholar] [CrossRef]
- Srivastava, H.M. Relations between functions contiguous to certain hypergeometric functions of three variables. Proc. Nat. Acad. Sci. India Sec. A 1966, 36, 377–385. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; CRC Press (Chapman and Hall): Boca Raton, FL, USA, 2002. [Google Scholar]
- Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1974, 5, 41–65. [Google Scholar] [CrossRef]
- von Lommel, E.C.J. Die Beugungserscheinungen einer kreisrunden Öffnung und eines kreisrunden Schirmchens theoretisch und experimentell bearbeitet. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 1884–1886, 15, 229–328. [Google Scholar]
- von Lommel, E.C.J. Die Beugungserscheinungen geradlinig begrenzter Schirme. Abh. der math. phys. Classe der k. b. Akad. der Wiss. (München) 1884–1886, 15, 529–664. [Google Scholar]
- Ifantis, E.K.; Siafarikas, P.D. Inequalities involving Bessel and modified Bessel functions. J. Math. Anal. Appl. 1990, 147, 214–227. [Google Scholar] [CrossRef]
- Minakshisundaram, S.; Szász, O. On absolute convergence of multiple Fourier series. Trans. Amer. Math. Soc. 1947, 61, 36–53. [Google Scholar] [CrossRef]
- Landau, L. Monotonicity and bounds on Bessel functions. In Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, Berkeley, CA, USA, 1999, 147–154 Electron. J. Differ. Equ. Conf. 4, Southwest Texas State Univ.: San Marcos, TX, USA, 2000.
- Olenko, A.Y. Upper bound on Jν(x) and its applications. Integral Transforms Spec. Funct. 2006, 17, 455–467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).