Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Performance Degradation Modeling and Its Prediction Algorithm of IGBT Gate Oxide Layer Based on CNN-LSTM Network

Version 1 : Received: 16 April 2023 / Approved: 17 April 2023 / Online: 17 April 2023 (09:13:59 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, X.; Zhou, Z.; He, S.; Liu, J.; Cui, W. Performance Degradation Modeling and Its Prediction Algorithm of an IGBT Gate Oxide Layer Based on a CNN-LSTM Network. Micromachines 2023, 14, 959. Wang, X.; Zhou, Z.; He, S.; Liu, J.; Cui, W. Performance Degradation Modeling and Its Prediction Algorithm of an IGBT Gate Oxide Layer Based on a CNN-LSTM Network. Micromachines 2023, 14, 959.

Abstract

The problem of health status prediction of insulated-gate bipolar transistors (IGBTs) gains a lot of attention in the field of health management of power electronic equipment. The performance degradation of IGBT gate oxide layer is one of the important failure modes. In view of failure mechanism analysis and easy implementation of monitoring circuit, this paper selects the gate leakage current of IGBT as the precursor parameter of gate oxide degradation, and uses time domain characteristic analysis, gray correlation degree, Mahalanobis distance, Kalman filter and other methods to carry out feature selection and fusion, and finally obtains a health indicator characterizing the degradation of IGBT gate oxide. Based on the Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) network, this paper constructs an IGBT gate oxide degradation prediction model, and performs experimental analysis on the dataset released by NASA-Ames Laboratory, and the average absolute error of performance degradation prediction is as low as 0.0216. Compared with Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Support Vector Regression (SVR) and CNN-LSTM models, CNN-LSTM network has the highest prediction accuracy. These results show the feasibility of gate leakage current as a precursor parameter of IGBT gate oxide layer failure, as well as the accuracy and reliability of the CNN-LSTM prediction model.

Keywords

IGBT; gate oxide layer degradation; feature fusion; performance prediction; CNN-LSTM network

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.