Submitted:
31 March 2023
Posted:
31 March 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental design and treatments
2.2. Substrate
2.3. Rumen juice donor cows
2.4. Buffer
2.5. Preparation and launch of incubations
2.6. Measurements, samplings, and analysis
- The flasks were opened consecutively, and the pH of the medium was measured immediately (flasks maintained in the water bath).
- The nylon bags containing the undegraded substrate were removed from the flasks, rinsed briefly with cold water, then frozen (-18oC) for 24 hours. After defrosting, the nylon bags were washed a second time in cold water for 2 minutes in the washing machine and oven dried for 48 hours at 60°C. The nylon bags containing the dry matter (DM) residues were weighed, and the dDM% was calculated [28].
- Replicates of the same treatment of the final fermentation medium were pooled and sampled (12 ml/pool). The samples were frozen (-18oC) before being sent for VFA analysis (total concentration and individual profile) by gas chromatography (Upscience, Saint-Nolff, France).
- The pooled final fermentation medium was centrifuged to separate 3 different fractions, based on the method described by [22]: UNSOL (containing undegraded feed particles, protozoa and insolubilized minerals), BACT and SOL. The pooled fermentation medium was first refrigerated (4oC) for 6 hours [29], then agitated with a magnetic stirrer (400 rpm) for 45 seconds to detach the bacteria bound to fiber particles. Next, the fermentation medium was centrifuged (Haraeus Multifuge X3R, Thermo Fisher Scientific) at 100 x g for 5 minutes at 4oC, the total quantity of obtained pellet (UNSOL) was recovered and frozen at -80oC before freeze-drying (CHRIST BETA 1-8 LSC PLUS, Martin Christ, Germany). The obtained supernatant was centrifuged at 18500 x g for 20 minutes at 4oC. The total quantity of the SOL was registered and then sampled (10 ml) and frozen at -80oC; the total quantity of obtained pellet (BACT) was recovered and frozen at -80oC before freeze-drying. Following the freeze-drying, the UNSOL and BACT were sent for DAPA (Upscience, Saint-Nolff, France) and TM (UT2A, Pau, France) analysis. The SOL samples were analyzed only for TM content (UT2A, Pau, France), as previous studies done in the lab had consistently shown that this fraction contained no DAPA.
- TM (total TM and % of total TM) in each fraction (UNSOL, BACT and SOL) of the final fermentation medium was calculated based on TM content of the fractions [30].
- Total DAPA was used as rumen bacterial synthesis marker and calculated based on DAPA concentration of UNSOL and BACT [31].The DAPA concentration of BACT was also used to confirm the enrichment with bacteria.
- Data were statistically analyzed by Analysis of Variance and Tukey-test with R software (version 4.1.3), with the treatment as a fixed factor, the replicates (incubation flasks) or the incubations (for TM analysis in the fractions) as a random factor.
3. Results
3.1. Manganese
3.1.1. Fermentation parameters
3.1.2. Ruminal mineral solubility and bioavailability
3.2. Zinc
3.2.1. Fermentation parameters
3.2.2. Ruminal mineral solubility and bioavailability
3.3. Copper
3.3.1. Fermentation parameters
3.3.2. Ruminal mineral solubility and bioavailability
4. Discussion
4.1. Manganese
4.2. Zinc
4.3. Copper
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hosnedlová B, Travnicek J, Šoch M. Current view of the significance of zinc for ruminants: A review. Agricultura tropica et subtropica. 2007, 40, 57–64.
- Sloup V, Jankovská I, Nechybová S, Peřinková P, Langrova I. Zinc in the Animal Organism: A Review. Scientia Agriculturae Bohemica. 2017, 48.
- Hostetler CE, Kincaid RL, Mirando MA. The role of essential trace elements in embryonic and fetal development in livestock. The Veterinary Journal 2003, 166, 125–139. [CrossRef] [PubMed]
- Hilal E, Elkhairey M, Osman A. The Role of Zinc, Manganse and Copper in Rumen Metabolism and Immune Function: A Review Article. Open Journal of Animal Sciences. 2016, 06, 304–324.
- Chamberlain CC, Burroughs W. Effect of Fluoride, Magnesium and Manganese Ions on in Vitro Cellulose Digestion by Rumen Microorganisms1. Journal of Animal Science. 1962, 21, 428–432. [CrossRef]
- Martinez A, Church DC. Effect of various mineral elements on in vitro rumen cellulose digestion. J Anim Sci. 1970, 31, 982–990. [CrossRef] [PubMed]
- Arelovich HM, Owens FN, Horn GW, Vizcarra JA. Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea. J Anim Sci. 2000, 78, 2972–2979. [CrossRef] [PubMed]
- Martínez, A. Effect of some major and trace element interactions upon in vitro rumen cellulose digestion. 1971 [cited 2023 Feb 26]. Available from: https://www.semanticscholar.org/paper/Effect-of-some-major-and-trace-element-interactions-Mart%C3%ADnez/d4c7456f215fd8fbff26845bc944c5b713ae9c9b.
- Hosseini-Vardanjani SF, Rezaei J, Karimi-Dehkordi S, Rouzbehan Y. Effect of feeding nano-ZnO on performance, rumen fermentation, leukocytes, antioxidant capacity, blood serum enzymes and minerals of ewes. Small Ruminant Research. 2020, 191, 106170. [CrossRef]
- Bonhomme A, Durand M, Dumay C, Beaumatin P. Etude in vitro du comportement des populations microbiennes du rumen en présence de zinc sous forme de sulfate. Ann Biol anim Bioch Biophys. 1979, 19, 937–942.
- Hernández-Sánchez D, Cervantes-Gómez D, Ramírez-Bribiesca JE, Cobos-Peralta M, Pinto-Ruiz R, Astigarraga L, et al. The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. J Sci Food Agric. 2019, 99, 1073–1077. [CrossRef]
- Slyter LL, Wolin MJ. Copper sulfate-induced fermentation changes in continuous cultures of the rumen microbial ecosystem. Appl Microbiol. 1967, 15, 1160–1164. [CrossRef]
- Arce-Cordero JA, Monteiro HF, Lelis AL, Lima LR, Restelatto R, Brandao VLN, et al. Copper sulfate and sodium selenite lipid-microencapsulation modifies ruminal microbial fermentation in a dual-flow continuous-culture system. J Dairy Sci. 2020, 103, 7068–7080. [CrossRef]
- Vaswani S, Sidhu VK, Roy D, Kumar M, Kushwaha R. Effect of Copper Supplementation on In -vitro Rumen Fermentation Characteristics. International Journal of Livestock Research. 2017, 1.
- Wang C, Han L, Zhang GW, Du HS, Wu ZZ, Liu Q, et al. Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows. British Journal of Nutrition. Cambridge University Press. 2021, 125, 251–259. [CrossRef]
- Trumeau D. Les oligo-éléments en élevage bovin. Analyse descriptive des profils métaboliques en oligo-éléments établis en laboratoire d’analyse et liens avec les aspects cliniques. ONIRIS, Nantes, France; 2014.
- European Commission. Directorate General for Health and Food Safety. European Union register of feed additives pursuant to Regulation (EC) No 1831/2003.Annex I, List of additives (Released date 06.12.2022) . [Internet]. LU: Publications Office; 2022 [cited 2023 Feb 26]. Available from: https://data.europa.eu/doi/10.2875/110483.
- Meschy, F. Alimentation minérale et vitaminique des ruminants : actualisation des connaissances. INRAE Productions Animales. 2007, 20, 119–128. [Google Scholar] [CrossRef]
- Inra, Noziere P, Sauvant D, Delaby L. Inra, 2018. Alimentation des ruminants [Internet]. Editions Quae; 2018 [cited 2023 Feb 26]. p. 728 p. Available from: https://hal.inrae.fr/hal-02789908.
- Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely P, et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology. 2016, 216, 1–18. [CrossRef]
- Krawielitzki R, Piatkowski B, Kreienbring F. Untersuchungen zum Gehalt an 2,6-Diaminopimelinsäure (DAP) und das DAP: N-Verhältnis in Pansenbakterien in Abhängigkeit von der Zeit nach der Fütterung. Archiv für Tierernaehrung. 1978, 28, 701–708. [CrossRef]
- Krawielitzki R, Voigt J, Piatkowski B. Der Einfluß unterschiedlicher Zentrifugationsbedingungen bei der Isolierung gemischter Pansenbakterien auf deren Gehalt an Stickstoff und Diaminopimelinsäure: Verwendung von Duodenalchymus als Ausgangsmaterial. Archiv für Tierernaehrung. 1989, 39, 813–821. [CrossRef]
- McSweeney CS, Denman SE. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J Appl Microbiol. 2007, 103, 1757–1765. [CrossRef]
- Mould FL, Morgan R, Kliem KE, Krystallidou E. A review and simplification of the in vitro incubation medium. Animal Feed Science and Technology. 2005, 123–124, 155–172. [CrossRef]
- Spears JW. Trace mineral bioavailability in ruminants. J Nutr. 2003, 133, 1506S–9S. [CrossRef]
- Ledoux D, Shannon M. Bioavailability and Antagonists of Trace Minerals in Ruminant Metabolism. 2005.
- Tilley JMA, Terry RA. A TWO-STAGE TECHNIQUE FOR THE IN VITRO DIGESTION OF FORAGE CROPS. Grass and Forage Sci. 1963, 18, 104–111. [CrossRef]
- Valentin SF, Williams PEV, Forbes JM, Sauvant D. Comparison of the in vitro gas production technique and the nylon bag degradability technique to measure short- and long-term processes of degradation of maize silage in dairy cows. Animal Feed Science and Technology. 1999, 78, 81–99. [CrossRef]
- Dehority BA, Grubb JA. Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl Environ Microbiol. 1980, 39, 376–381. [CrossRef] [PubMed]
- Genther ON, Hansen SL. The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science. 2015, 98, 566–573. [CrossRef] [PubMed]
- Dufva GS, Bartley EE, Arambel MJ, Nagaraja TG, Dennis SM, Galitzer SJ, et al. Diaminopimelic Acid Content of Feeds and Rumen Bacteria and Its Usefulness as a Rumen Bacterial Marker1. Journal of Dairy Science. 1982, 65, 1754–1759. [CrossRef]
- Overton TR, Yasui T. Practical applications of trace minerals for dairy cattle1,Journal of Animal Science. 2014, 92, 416–426. [CrossRef]
- van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW. The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent in vitro rumen degradation. Animal Feed Science and Technology. 2016, 213, 22–28. [CrossRef]
- Kišidayová S, Pristaš P, Zimovčáková M, Blanár Wencelová M, Homol’ová L, Mihaliková K, et al. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem. PLoS One. 2018, 13, e0191158. [CrossRef]
- Weimer PJ. Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science. 1998, 76, 3114–3122. [CrossRef]
- Maskaľová I, Vajda V, Bujnak L. 2,6-Diaminopimelic acid as a biological marker of rumen synthesis and fermentation capacities in the transition period and early lactation of dairy cows. Acta Veterinaria Brno. 2014, 83, 355–361. [CrossRef]
- Reis L, Pardo P, Camargos A, Oba E. Mineral element and heavy metal poisoning in animals. African Journal of Medicine and Medical Sciences. 2010, 1.
- PubChem. Manganese(II) oxide [Internet]. [cited 2023 Feb 26]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/14940.
- PubChem. Manganese sulfate monohydrate [Internet]. [cited 2023 Feb 26]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/177577.
- Guimaraes O, Wagner JJ, Spears JW, Brandao VLN, Engle TE. Trace mineral source influences digestion, ruminal fermentation, and ruminal copper, zinc, and manganese distribution in steers fed a diet suitable for lactating dairy cows. Animal. 2022, 16, 100500. [CrossRef]
- Jongbloed AW, Kemme PA, De Grotte G, Lippens M, Meschy F. Bioavailability of major trace minerals. Brussels, Belgium: EMFEMA, International Association of the European Manufacturers of Major Trace and Specific Feed Mineral Materials; 2002.
- Bielik V, Kolisek M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int J Mol Sci. 2021, 22, 6803.
- RIAZI H, REZAEI J, ROUZBEHAN Y. Effects of supplementary nano-ZnO on in vitro ruminal fermentation, methane release, antioxidants, and microbial biomass. Turkish Journal of Veterinary & Animal Sciences 2019, 43, 737–746. [CrossRef]
- Petrič D, Mravčáková D, Kucková K, Kišidayová S, Cieslak A, Szumacher-Strabel M, et al. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front Vet Sci. 2021, 8, 630971. [CrossRef]
- Wang C, Xu YZ, Han L, Liu Q, Guo G, Huo WJ, et al. Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. Livestock Science. 2021, 251, 104673. [CrossRef]
- Fellner V, Durosoy S, Kromm V, Spears JW. Effects of supplemental zinc on ruminal fermentation in continuous cultures**Use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service or criticism of similar products not mentioned. Applied Animal Science 2021, 37, 27–32. [CrossRef]
- PubChem. Zinc Oxide [Internet]. [cited 2023 Feb 26]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/14806.
- PubChem. Zinc Sulfate [Internet]. [cited 2023 Feb 26]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/24424.
- Hattori R, Torii S, Funaba M, Matsui T. Determination of true absorption and fecal endogenous loss of zinc in goats. Animal Science Journal. John Wiley & Sons, Ltd. 2010, 81, 564–568. [CrossRef]
- Wilk M, Pecka-Kiełb E, Pastuszak J, Asghar MU, Mól L. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture. Multidisciplinary Digital Publishing Institute. 2022, 12, 1943. [CrossRef]
- Zhang W, Wang R, Zhu X, Kleemann DO, Yue C, Jia Z. Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats. Asian-Australasian Journal of Animal Sciences. Asian-Australasian Association of Animal Production Societies. 2007, 20, 1843–1848. [CrossRef]
- Engle TE, Spears JW. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. Journal of Animal Science. 2000, 78, 2452–2458. [CrossRef]
- Jr K, Lenártová V, Holovská K, Sobeková A, Javorský P. Heavy metals and the oxidative stress in some rumen bacteria. Biologia - Section Cellular and Molecular Biology. 2005, 60, 649–653.
- Clarkson AH, Paine SW, Kendall NR. Evaluation of the solubility of a range of copper sources and the effects of iron & sulphur on copper solubility under rumen simulated conditions. J Trace Elem Med Biol. 2021, 68, 126815. [CrossRef]
- Spears JW, Brandao VLN, Heldt J. Invited Review: Assessing trace mineral status in ruminants, and factors that affect measurements of trace mineral status. Applied Animal Science. 2022, 38, 252–267. [CrossRef]
| Item | Maize silage | Hay |
|---|---|---|
| DM (%) | 37.50 | 88.90 |
| Total ashes (% DM) | 2.90 | 4.20 |
| Ca (g/kg DM) | 2.60 | 1.95 |
| P (g/kg DM) | 1.94 | 1.70 |
| S (g/kg) | 1.22 | 0.25 |
| Cu1 (mg/kg DM) | <5.00 | <5.00 |
| Mn (mg/kg DM) | 15.00 | 224.00 |
| Zn (mg/kg DM) | 20.0 | 13.00 |
| Diet composition | Intake (kg DM/head/day) |
|---|---|
| Corn silage | 3.54 |
| Hay | 2.00 |
| Complete feed1 | 3.00 |
| Diet nutritional values | Concentration |
| CP (% DM) | 14.20 |
| Starch (% DM) | 19.80 |
| Total fiber (% DM) | 22.50 |
| Mn (mg/kg DM) | 57.00 |
| Zn (mg/kg DM) | 33.90 |
| Cu (mg/kg DM) | 7.20 |
| Item | CON | MnO_0h | MnO_24h | MnO_48h | MnS_0h | MnS_24h | MnS_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|---|---|
| TGP1 at 24h (ml/gDM) | 143 | 149 | - | - | 141 | - | - | 5.19 | 0.49 |
| TGP at 48h (ml/gDM) | 218 | 211 | 213 | - | 204 | 219 | - | 5.23 | 0.18 |
| TGP at 70h (ml/gDM) | 235 | 226 | 224 | 244 | 222 | 235 | 237 | 5.4 | 0.10 |
| dDM2 (%) | 88.6 | 88.0 | 86.5 | 87.3 | 87.1 | 87.4 | 86.6 | 0.56 | 0.09 |
| Total VFA3 (mM) | 89.8 | 85.3 | 88.6 | 87.6 | 88.8 | 85.4 | 86.4 | 3.40 | 0.94 |
| Acetate (%) | 58.0 | 58.0 | 58.1 | 58.8 | 58.0 | 58.7 | 58.0 | 0.40 | 0.64 |
| Propionate (%) | 21.8 | 22.3 | 21.4 | 21.1 | 22.6 | 21.6 | 22.0 | 0.45 | 0.30 |
| Butyrate (%) | 14.7 | 14.4 | 14.9 | 14.6 | 13.9 | 14.4 | 14.7 | 0.21 | 0.06 |
| Acetate:Propionate | 2.67 | 2.61 | 2.71 | 2.79 | 2.57 | 2.72 | 2.64 | 0.068 | 0.36 |
| Final pH | 6.51 | 6.53 | 6.52 | 6.53 | 6.52 | 6.55 | 6.54 | 0.029 | 0.90 |
| Total DAPA4 (mg) | 1.93 | 1.56 | 1.76 | 1.98 | 1.52 | 1.79 | 1.63 | 0.163 | 0.35 |
| UNSOL5:BACT6-DAPA ratio | 2.6 | 2.7 | 2.9 | 2.9 | 2.9 | 2.8 | 3.0 | 0.27 | 0.94 |
| Item | CON | MnO_0h | MnO_24h | MnO_48h | MnS_0h | MnS_24h | MnS_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|---|---|
| UNSOL1 - Mn (mg/kg DM) |
110a | 252ab | 458d | 457d | 306bc | 373bcd | 406cd | 30.2 | <0.01 |
| BACT2 - Mn (mg/kg DM) |
76a | 238b | 330c | 327c | 291bc | 326c | 315bc | 17.2 | <0.001 |
| SOL3 - Mn (mg/kg) |
0.81a | 3.13b | 3.17b | 3.02b | 4.40b | 3.67b | 4.63b | 0.370 | <0.05 |
| Total4 Mn (mg) | 1.02a | 3.76b | 4.00b | 3.91b | 4.73b | 4.51b | 5.60b | 0.49 | <0.001 |
| UNSOL - Mn (% of total Mn) |
7.6ab | 3.8a | 8.3ab | 11.5b | 3.9a | 5.9ab | 3.7a | 1.49 | <0.001 |
| BACT - Mn (% of total Mn) |
3.6 | 3.2 | 4.1 | 4.2 | 2.7 | 3.3 | 2.8 | 0.49 | 0.24 |
| SOL – Mn (% of total Mn) |
88.8ab | 93.0b | 87.6ab | 84.2a | 93.4b | 90.8b | 93.6b | 1.59 | <0.01 |
| Item | CON | ZnO_0h | ZnO_24h | ZnO_48h | ZnS_0h | ZnS_24h | ZnS_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|---|---|
| TGP1 at 24h (ml/gDM) | 89 | 83 | - | - | 86 | - | - | 2.9 | 0.14 |
| TGP at 48h (ml/gDM) | 142b | 126a | 146b | - | 139ab | 139ab | - | 3.6 | <0.01 |
| TGP at 70h (ml/gDM) | 168ab | 147a | 169b | 159ab | 159ab | 158ab | 167ab | 4.4 | <0.05 |
| dDM2 (%) | 71.8ab | 67.5a | 72.5b | 71.8ab | 70.3ab | 70.9ab | 72.8b | 1.10 | <0.05 |
| Total VFA3 (mM) | 70.9 | 65.0 | 75.8 | 70.7 | 72.3 | 74.6 | 71.6 | 4.06 | 0.64 |
| Acetate (%) | 65.1 | 64.6 | 65.3 | 65.3 | 65.2 | 65.5 | 65.4 | 0.59 | 0.96 |
| Propionate (%) | 20.7 | 20.8 | 20.7 | 20.7 | 20.2 | 20.4 | 20.5 | 0.37 | 0.93 |
| Butyrate (%) | 9.0 | 9.2 | 9.0 | 8.7 | 9.5 | 9.2 | 8.9 | 0.24 | 0.65 |
| Acetate:Propionate | 3.15 | 3.11 | 3.15 | 3.16 | 3.22 | 3.22 | 3.19 | 0.074 | 0.93 |
| Final pH | 6.55 | 6.58 | 6.55 | 6.57 | 6.56 | 6.56 | 6.56 | 0.006 | 0.50 |
| Total DAPA4 (mg) | 2.71b | 2.61b | 2.57b | 2.02a | 2.46b | 2.44b | 2.05a | 0.148 | <0.05 |
| UNSOL5:BACT6-DAPA ratio | 1.8 | 2.0 | 2.0 | 1.9 | 2.1 | 2.0 | 1.9 | 0.10 | 0.58 |
| Item | CON | ZnO_0h | ZnO_24h | ZnO_48h | ZnS_0h | ZnS_24h | ZnS_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|---|---|
| UNSOL1 - Zn (mg/kg DM) |
223a | 357a | 970bcd | 857bc | 611ab | 1287d | 1137cd | 81.8 | <0.001 |
| BACT2 - Zn (mg/kg DM) |
153a | 249a | 363a | 348a | 547a | 1200b | 1147b | 98.1 | <0.001 |
| SOL3 - Zn (mg/kg) |
0.085a | 0.121a | 0.082a | 0.079a | 0.271b | 0.252b | 0.276b | 0.0226 | <0.001 |
| Total4 Zn (mg) | 0.31a | 0.53ab | 1.04cd | 0.68abc | 0.94bcd | 1.72e | 1.25de | 0.102 | <0.001 |
| UNSOL - Zn (% of total Zn) |
48.3 | 50.7 | 71.8 | 68.8 | 40.7 | 49.7 | 42.7 | 7.27 | 0.051 |
| BACT - Zn (% of total Zn) |
20.8 | 23.9 | 19.2 | 21.0 | 27.0 | 33.8 | 38.3 | 7.06 | 0.43 |
| SOL - Zn (% of total Zn) |
30.9d | 25.4cd | 9.0a | 10.2a | 32.4d | 16.5ab | 19.0bc | 1.75 | <0.001 |
| Item | CON | CuS_0.01_0h | CuS_0.015_0h | CuS_0.015_24h | CuS_0.015_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|
| TGP1 at 24h (ml/gDM) | 85 | 88 | 80 | - | - | 3.1 | 0.26 |
| TGP at 48h (ml/gDM) | 130 | 138 | 129 | 135 | - | 4.1 | 0.32 |
| TGP at 70h (ml/gDM) | 159 | 162 | 161 | 164 | 156 | 3.2 | 0.44 |
| dDM2 (%) | 66.9 | 68.2 | 70.0 | 67.6 | 67.4 | 0.90 | 0.15 |
| Total VFA3 (mM) | 76.1 | 74.5 | 77.1 | 73.7 | 71.5 | 3.51 | 0.81 |
| Acetate (%) | 66.0 | 66.0 | 66.4 | 66.8 | 64.5 | 1.34 | 0.79 |
| Propionate (%) | 20.3 | 20.7 | 20.0 | 19.8 | 21.7 | 0.71 | 0.46 |
| Butyrate (%) | 8.1 | 8.2 | 8.0 | 8.3 | 8.6 | 0.56 | 0.93 |
| Acetate:Propionate | 3.26 | 3.19 | 3.32 | 3.39 | 2.98 | 0.178 | 0.58 |
| Final pH | 6.60 | 6.59 | 6.60 | 6.59 | 6.61 | 0.007 | 0.58 |
| Total DAPA4 (mg) | 2.07 | 1.87 | 1.87 | 1.78 | 1.69 | 0.280 | 0.89 |
| UNSOL4:BACT5-DAPA ratio | 2.3 | 2.4 | 2.8 | 2.4 | 2.5 | 0.15 | 0.37 |
| Item | CON | CuS_0.01_0h | CuS_0.015_0h | CuS_0.015_24h | CuS_0.015_48h | SEM | p Value |
|---|---|---|---|---|---|---|---|
| UNSOL1 - Cu (mg/kg DM) |
32a | 118a | 485b | 599b | 697b | 55.0 | <0.01 |
| BACT2 - Cu (mg/kg DM) |
27a | 95 | 418b | 660b | 656b | 46.4 | <0.001 |
| SOL3 - Cu (mg/kg) |
0.044a | 0.114a | 0.415b | 0.438b | 0.495b | 0.0473 | <0.01 |
| Total4 Cu (mg) | 0.086a | 0.242a | 0.815b | 1.290c | 1.304c | 0.0835 | <0.001 |
| UNSOL - Cu (% of total Cu) |
30.9 | 29.3 | 31.3 | 39.6 | 38.9 | 4.46 | 0.45 |
| BACT - Cu (% of total Cu) |
12.1 | 17.5 | 26.5 | 23.2 | 18.7 | 3.82 | 0.22 |
| SOL - Cu (% of total Cu) |
57.0 | 53.2 | 57.8 | 37.2 | 42.4 | 5.39 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
