Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Using a Rainfall Simulator to Define the Effect of Soil Conservation Techniques on Soil Loss and Water Retention

Version 1 : Received: 6 January 2023 / Approved: 9 January 2023 / Online: 9 January 2023 (10:54:58 CET)

A peer-reviewed article of this Preprint also exists.

Stašek, J.; Krása, J.; Mistr, M.; Dostál, T.; Devátý, J.; Středa, T.; Mikulka, J. Using a Rainfall Simulator to Define the Effect of Soil Conservation Techniques on Soil Loss and Water Retention. Land 2023, 12, 431. Stašek, J.; Krása, J.; Mistr, M.; Dostál, T.; Devátý, J.; Středa, T.; Mikulka, J. Using a Rainfall Simulator to Define the Effect of Soil Conservation Techniques on Soil Loss and Water Retention. Land 2023, 12, 431.

Abstract

In the Czech Republic, the Universal Soil Loss Equation provides the basis for defining the soil protection strategy. Field rainfall simulators were used to define the actual cover-management factor values of the most extensively seeded crops in the Czech Republic. More than 380 simulations between 2016 and 2021 provided data. The methodology focused on multi-seasonal measurements to cover the most important phenological phases. A comparison with the original USDA values for maize showed that it is desirable to redefine the C-factor. 71 fallow plot experiments showed that the rainfall-runoff relation is much easier to replicate than the actual sediment transport. For 30-minute intensive rainfall, the runoff ratio reached 62%, and the coefficient of variation was 25%. On saturated soil, the runoff ratio reached 81% and the coefficient of variation dropped to 12%. Soil protection techniques have a significant effect on runoff reduction. Maize seeded after cover crops and combined with reduced tillage or direct seeding can reduce the runoff ratio to 10-20% for ‘dry’ conditions and to 12-40% for ‘saturated’ conditions. Concerning soil loss, the variations are greater, with the coefficient of variation reaching 42% during fallow plot experiments. The reader should consider associated uncertainties.

Keywords

soil erosion; rainfall simulator; soil protection; USLE; soil loss ratio; cover crops; C-factor; runoff coefficient

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.