Submitted:
26 January 2023
Posted:
27 January 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Blood-Alcohol Determination
2.1. GC-MS

2.2. Semiquantitative Widmark Equation
- a)
- the hypothetical initial blood alcohol concentration (before any metabolism has occurred).
- b)
- amount of pure ethanol consumed.
- c)
- fraction of blood volume that is water.
- d)
3. „OMICS”
3.1. Possibilities
3.1.1. MS-Based Quantitative Strategies and Analysis of Proteome, Genome, and Transcriptome
3.1.2. MS-Based Quantitative Strategies, Food, and Environment
4. A Systematic Review of Mass Spectrometry and OMICS
5. Immunoassay or Mass Spectrometry—Affordability
5.1. Feasibility
6. Sustainable MS-Based Quantitative Strategies
6.1. A Systematic Review of Mass Spectrometry and Sustainability/ Mass Spectrometry and Sustainability
7. Machine Learning and Artificial Intelligence (AI) Approaches
8. Conclusions
References
- Di Girolamo, F.; Lante, I.; Muraca, M.; Putignani, L. The Role of Mass Spectrometry in the "Omics" Era. Curr Org Chem 2013, 17, 2891–2905. [Google Scholar] [CrossRef] [PubMed]
- Zaikin, V.G.; Borisov, R.S. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. Journal of Analytical Chemistry 2021, 76, 1567–1587. [Google Scholar] [CrossRef]
- Ozdemir, V. OMICS 2.0: An Accelerator for Global Science, Systems Medicine and Responsible Innovation. OMICS 2015, 19, 579–580. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, V. OMICS 2.0: a practice turn for 21(st) century science and society. OMICS 2013, 17, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Pacot, G.M.M.; Lee, L.M.; Chin, S.T.; Marriott, P.J. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture. Journal of Chemical Education 2016, 93, 742–746. [Google Scholar] [CrossRef]
- Prodhan, M.A.I.; McClain, C.; Zhang, X. Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry-Based Metabolomics. Adv Exp Med Biol 2021, 1280, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Yost, R.A. Why tandem mass spectrometry for trace analysis: Concepts of tandem analytical techniques. Rapid Commun Mass Spectrom 2022, 36, e9310. [Google Scholar] [CrossRef] [PubMed]
- Zeki, O.C.; Eylem, C.C.; Recber, T.; Kir, S.; Nemutlu, E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J Pharm Biomed Anal 2020, 190, 113509. [Google Scholar] [CrossRef]
- Ferreira, A.B.; Castro, A.L.; Tarelho, S.; Domingues, P.; Franco, J.M. GC-MS - Still standing for clinical and forensic analysis: validation of a multidrug method to detect and quantify illicit drugs. Australian Journal of Forensic Sciences 2021, 1–22. [Google Scholar] [CrossRef]
- Harvey, D. Modern analytical chemistry; McGraw-Hill New York: 2000; Volume 1.
- Chun, H.J.; Poklis, J.L.; Poklis, A.; Wolf, C.E. Development and Validation of a Method for Alcohol Analysis in Brain Tissue by Headspace Gas Chromatography with Flame Ionization Detector. J Anal Toxicol 2016, 40, 653–658. [Google Scholar] [CrossRef]
- Jones, A.W. Alcohol, its analysis in blood and breath for forensic purposes, impairment effects, and acute toxicity. Wiley Interdisciplinary Reviews: Forensic Science 2019, 1, e1353. [Google Scholar] [CrossRef]
- Mihretu, L.D.; Gebru, A.G.; Mekonnen, K.N.; Asgedom, A.G.; Desta, Y.H. Determination of ethanol in blood using headspace gas chromatography with flameionization detector (HS-GC-FID): Validation of a method. Cogent Chemistry 2020, 6, 1760187. [Google Scholar] [CrossRef]
- Fischer, I.; Milton, C.; Wallace, H. Toxicity testing is evolving! Toxicol Res (Camb) 2020, 9, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Maskell, P.D.; Korb, A.S. Revised equations allowing the estimation of the uncertainty associated with the Total Body Water version of the Widmark equation. J Forensic Sci 2022, 67, 358–362. [Google Scholar] [CrossRef]
- Maskell, P.D.; Cooper, G.A.A. The Contribution of Body Mass and Volume of Distribution to the Estimated Uncertainty Associated with the Widmark Equation. J Forensic Sci 2020, 65, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Maskell, P.D.; Jones, A.W.; Heymsfield, S.B.; Shapses, S.; Johnston, A. Total body water is the preferred method to use in forensic blood-alcohol calculations rather than ethanol's volume of distribution. Forensic Sci Int 2020, 316, 110532. [Google Scholar] [CrossRef] [PubMed]
- Kapila, S.N.; Boaz, K.; Natarajan, S. The post-analytical phase of histopathology practice: Storage, retention and use of human tissue specimens. Int J Appl Basic Med Res 2016, 6, 3–7. [Google Scholar] [CrossRef]
- Simpson, G. Medicolegal alcohol determination: Widmark revisited. Clin Chem 1988, 34, 888–889. [Google Scholar] [CrossRef]
- Gorgus, E.; Hittinger, M.; Schrenk, D. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing. J Anal Toxicol 2016, 40, 537–542. [Google Scholar] [CrossRef]
- Jones, A.W. Comment on 'Estimates of Non-Alcoholic Food-Derived Ethanol and Methanol in Human'. J Anal Toxicol 2022, 46, e48–e51. [Google Scholar] [CrossRef]
- Brick, J.; Bennett, W. Alcohol Calculations in Emergency and Forensic Medicine. J Addict Med Ther Sci 2017, 3, 024–029. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What are omics sciences? In Periparturient diseases of dairy cows; Springer: 2017; pp. 1-7.
- Smejkal, G.B. I'm an -omics, you're an -omics. Expert Review of Proteomics 2006, 3, 383–385. [Google Scholar] [CrossRef]
- Janiszewska, D.; Szultka-Mlynska, M.; Pomastowski, P.; Buszewski, B. "Omic" Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022, 23, 9601. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pursell, M.E.; DeVor, A.; Awoyemi, O.; Valentine, S.J.; Li, P. Portable mass spectrometry system: instrumentation, applications, and path to 'omics analysis. Proteomics 2022, 22, e2200112. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.L.; Gao, Y.; Wang, X.; Han, X.X.; Zhao, B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Tummers, A.; Erdmann, R.G. The Eye Versus Chemistry? From Twentieth to Twenty-First Century Connoisseurship. In Analytical Chemistry for the Study of Paintings and the Detection of Forgeries; Springer: 2022; pp. 3-45.
- Sengupta, P.; Chatterjee, B.; Tekade, R.K. Drug toxicity and forensic pharmacokinetics. In Pharmacokinetics and Toxicokinetic Considerations; Elsevier: 2022; pp. 425-486.
- Piechocka, J.; Wieczorek, M.; Glowacki, R. Gas Chromatography-Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr Protoc Mol Biol 2016, 114, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D'Auria, J.; Ewald, J.; J, C.E.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 2021, 18, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Cofsky, J.C.; Knott, G.J.; Gee, C.L.; Doudna, J.A. Crystal structure of an RNA/DNA strand exchange junction. PLoS One 2022, 17, e0263547. [Google Scholar] [CrossRef]
- Rao, A.; Barkley, D.; Franca, G.S.; Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 2021, 596, 211–220. [Google Scholar] [CrossRef]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Measurement Science Au 2022. [Google Scholar] [CrossRef]
- Rychert, J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. Journal of Infectiology and Epidemiology 2019, 2. [Google Scholar] [CrossRef]
- Fernandez-Pozo, N.; Haas, F.B.; Gould, S.B.; Rensing, S.A. An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. J Exp Bot 2022, 73, 4291–4305. [Google Scholar] [CrossRef] [PubMed]
- Raghavachari, N.; Garcia-Reyero, N. Overview of Gene Expression Analysis: Transcriptomics. Methods Mol Biol 2018, 1783, 1–6. [Google Scholar] [CrossRef]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: the teenage years. Nat Rev Genet 2019, 20, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Burgess, H.M.; Vink, E.I.; Mohr, I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022, 36, 108–132. [Google Scholar] [CrossRef]
- Yang, J.R. Does mRNA structure contain genetic information for regulating co-translational protein folding? Zool Res 2017, 38, 36–43. [Google Scholar] [CrossRef]
- Mattick, J.; Amaral, P. RNA, the Epicenter of Genetic Information. 2023.
- Komar, A.A. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. Biochemistry (Mosc) 2021, 86, 976–991. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022, 9, 911861. [Google Scholar] [CrossRef]
- Kustatscher, G.; Collins, T.; Gingras, A.C.; Guo, T.; Hermjakob, H.; Ideker, T.; Lilley, K.S.; Lundberg, E.; Marcotte, E.M.; Ralser, M.; et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat Methods 2022, 19, 774–779. [Google Scholar] [CrossRef]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Garcia, B.A.; et al. How many human proteoforms are there? Nat Chem Biol 2018, 14, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. Biochim Biophys Acta Proteins Proteom 2021, 1869, 140584. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database (Oxford) 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Pakhrin, S.C.; Pokharel, S.; Saigo, H.; Kc, D.B. Deep Learning–Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction. In Computational Methods for Predicting Post-Translational Modification Sites; Springer: 2022; pp. 285-322.
- Malakhova, O.A.; Yan, M.; Malakhov, M.P.; Yuan, Y.; Ritchie, K.J.; Kim, K.I.; Peterson, L.F.; Shuai, K.; Zhang, D.E. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003, 17, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Bagdonaite, I.; Malaker, S.A.; Polasky, D.A.; Riley, N.M.; Schjoldager, K.; Vakhrushev, S.Y.; Halim, A.; Aoki-Kinoshita, K.F.; Nesvizhskii, A.I.; Bertozzi, C.R.; et al. Glycoproteomics. Nature Reviews Methods Primers 2022, 2, 48. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I. Proteogenomics: concepts, applications and computational strategies. Nat Methods 2014, 11, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jensen, O.N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2009, 9, 4632–4641. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Haseeb, M. Need for High-Performance Computing for MS-Based Omics Data Analysis. In High-Performance Algorithms for Mass Spectrometry-Based Omics; Springer: 2022; pp. 1-5.
- Meissner, F.; Geddes-McAlister, J.; Mann, M.; Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022, 21, 637–654. [Google Scholar] [CrossRef]
- Li, C.; Chu, S.; Tan, S.; Yin, X.; Jiang, Y.; Dai, X.; Gong, X.; Fang, X.; Tian, D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021, 9, 813359. [Google Scholar] [CrossRef]
- Lippens, J.L.; Nshanian, M.; Spahr, C.; Egea, P.F.; Loo, J.A.; Campuzano, I.D.G. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes. J Am Soc Mass Spectrom 2018, 29, 183–193. [Google Scholar] [CrossRef]
- Herrero, M.; Simo, C.; Garcia-Canas, V.; Ibanez, E.; Cifuentes, A. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 2012, 31, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.R.; Hashim, Z.; Su, S.B.; Bundschuh, J. Environmental Toxicology in Addressing Public Health Challenges in East Asia. Biomed Res Int 2015, 2015, 920518. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, A. Food analysis and foodomics. J Chromatogr A 2009, 1216, 7109. [Google Scholar] [CrossRef] [PubMed]
- Stingone, J.A.; Triantafillou, S.; Larsen, A.; Kitt, J.P.; Shaw, G.M.; Marsillach, J. Interdisciplinary data science to advance environmental health research and improve birth outcomes. Environ Res 2021, 197, 111019. [Google Scholar] [CrossRef] [PubMed]
- Pico, Y.; Barcelo, D. Mass Spectrometry in Wastewater-Based Epidemiology for the Determination of Small and Large Molecules as Biomarkers of Exposure: Toward a Global View of Environment and Human Health under the COVID-19 Outbreak. ACS Omega 2021, 6, 30865–30872. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Kang, S.; Wang, W.; Garg, A.; Maile-Moskowitz, A.; Vikesland, P.J. Nanobiotechnology enabled approaches for wastewater based epidemiology. Trends Analyt Chem 2021, 143, 116400. [Google Scholar] [CrossRef] [PubMed]
- Wan, H. An overall comparison of small molecules and large biologics in ADME testing. Admet and Dmpk 2016, 4, 1–22. [Google Scholar] [CrossRef]
- Shiroishi, Y.; Uchiyama, K.; Suzuki, N. Society 5.0: For human security and well-being. Computer 2018, 51, 91–95. [Google Scholar] [CrossRef]
- Ohlsson, C.; Nilsson, M.E.; Tivesten, Å.; Ryberg, H.; Mellström, D.; Karlsson, M.K.; Ljunggren, Ö.; Labrie, F.; Orwoll, E.S.; Lee, D.M. Comparisons of immunoassay and mass spectrometry measurements of serum estradiol levels and their influence on clinical association studies in men. The Journal of Clinical Endocrinology & Metabolism 2013, 98, E1097–E1102. [Google Scholar]
- Stevens, K.G.; Pukala, T.L. Conjugating immunoassays to mass spectrometry: solutions to contemporary challenges in clinical diagnostics. TrAC Trends in Analytical Chemistry 2020, 132, 116064. [Google Scholar] [CrossRef]
- Jackson, S.; Lee, S.; Badu-Tawiah, A.K. Automated Immunoassay Performed on a 3D Microfluidic Paper-Based Device for Malaria Detection by Ambient Mass Spectrometry. Analytical chemistry 2022, 94, 5132–5139. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, J.; Yang, Y.; Tang, K. Deep learning under mass-to-charge ratio pre-retrieval to realize electron ionization mass spectrometry library retrieval. Rapid Commun Mass Spectrom 2022, 36, e9398. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.G.; Pukala, T.L. Conjugating immunoassays to mass spectrometry: Solutions to contemporary challenges in clinical diagnostics. Trends Analyt Chem 2020, 132, 116064. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, H.; Bai, Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022, 414, 5121–5138. [Google Scholar] [CrossRef] [PubMed]
- Trenchevska, O.; Nelson, R.W.; Nedelkov, D. Mass spectrometric immunoassays for discovery, screening and quantification of clinically relevant proteoforms. Bioanalysis 2016, 8, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.M.; Borowsky, A.D.; Angelo, M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Invest 2015, 95, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Danese, E.; Lippi, G. Mass spectrometry and total laboratory automation: opportunities and drawbacks. Clin Chem Lab Med 2020, 58, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- DelGuidice, C.E.; Ismaiel, O.A.; Mylott, W.R., Jr.; Halquist, M.S. Comparison of methods for quantitative analysis of ranibizumab and bevacizumab in human plasma using various bioanalytical techniques, including microfluidic immunoassay, triple quadrupole, and high-resolution liquid chromatography-tandem mass spectrometry approaches. J Pharm Biomed Anal 2022, 217, 114823. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, J. Financial considerations for purchasing a mass spectrometer. MSACL Presentation 2018. [Google Scholar]
- Padula, W.V.; Lee, K.K.H.; Pronovost, P.J. Using Economic Evaluation to Illustrate Value of Care for Improving Patient Safety and Quality: Choosing the Right Method. J Patient Saf 2021, 17, e568–e574. [Google Scholar] [CrossRef]
- Jarosz, M.; Keppler, B.K.; Timerbaev, A.R. Current and emerging mass spectrometry methods for the preclinical development of metal-based drugs: a critical appraisal. Anal Bioanal Chem 2022, 414, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Matheson, A.; Botcherby, L. Trends and Developments in GC and GC-MS: A panel discussion on the latest advances and future developments in gas chromatography mass spectrometry (GC-MS). The Column 2020, 16, 27–32. [Google Scholar]
- Bonnabry, P.; Francois, O. Return on investment: a practical calculation tool to convince your institution. Eur J Hosp Pharm 2020, 27, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Lee, D.-J.; Ri, P.; Kim, K.-T.; Park, S.-J. Case study: An assessment of the economic service life of research equipment in the Korean public research institutes. The Engineering Economist 2022, 67, 131–156. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol 2020, 21, 154. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Cleaves, H.J.; Meringer, M.; Chandru, K. The Post-COVID-19 Era: Interdisciplinary Demands of Contagion Surveillance Mass Spectrometry for Future Pandemics. Sustainability 2021, 13, 7614. [Google Scholar] [CrossRef]
- SoRelle, J.A.; Patel, K.; Filkins, L.; Park, J.Y. Mass Spectrometry for COVID-19. Clin Chem 2020, 66, 1367–1368. [Google Scholar] [CrossRef] [PubMed]
- Popescu, L.; Robu, A.C.; Zamfir, A.D. Sustainable Nanosystem Development for Mass Spectrometry: Applications in Proteomics and Glycomics. Sustainable Nanosystems Development, Properties, and Applications 2017, 535–568. [Google Scholar] [CrossRef]
- Huss, A.; Peters, A.; Zhao, T.; Barouki, R.; Kogevinas, M.; Vermeulen, R.; Matthies-Wiesler, F. Setting the European environment and health research agenda -under-researched areas and solution-oriented research. Environ Int 2022, 163, 107202. [Google Scholar] [CrossRef]
- Flamini, A.; Jahanshahi, B.; Mohaddes, K. Illegal drugs and public corruption: Crack based evidence from California. European Journal of Political Economy 2021, 69, 102005. [Google Scholar] [CrossRef]
- Varga, Z.; Wallenius, M.; Krachler, M.; Rauff-Nisthar, N.; Fongaro, L.; Knott, A.; Nicholl, A.; Mayer, K. Trends and perspectives in Nuclear Forensic Science. Trac-Trends in Analytical Chemistry 2022, 146, 116503. [Google Scholar] [CrossRef]
- Hayashi, H.; Sasajima, H.; Takayanagi, Y.; Kanamaru, H. International standardization for smarter society in the field of measurement, control and automation. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE); 2017; pp. 263–266. [Google Scholar]
- De Cremer, D.; Narayanan, D.; Deppeler, A.; Nagpal, M.; McGuire, J. The road to a human-centred digital society: opportunities, challenges and responsibilities for humans in the age of machines. AI Ethics 2022, 2, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Bae, J.M.; Kang, D.W.; Kim, G.; Han, H.S. Development of quality assurance program for digital pathology by the Korean Society of Pathologists. J Pathol Transl Med 2022, 56, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtani, N.; Alruwaie, S.; Al-Zahrani, B.M.; Abumadini, R.A.; Aljaafary, A.; Hariri, B.; Alissa, K.; Alakrawi, Z.; Alumran, A. Digital health transformation in Saudi Arabia: A cross-sectional analysis using Healthcare Information and Management Systems Society' digital health indicators. Digit Health 2022, 8, 20552076221117742. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Ogunmola, G.A.; Enbeyle, W.; Abdullahi, M.; Pandey, B.K.; Pramanik, S. COVID-19: A Framework for Effective Delivering of Online Classes During Lockdown. Human Arenas 2022, 5, 322–336. [Google Scholar] [CrossRef]
- Kumar, P.R.; Ravindranath, K.V.; Srilatha, V.; Alobaoid, M.A.; Kulkarni, M.M.; Mathew, T.; Tiwari, H.D. Analysis of Advances in Research Trends in Robotic and Digital Dentistry: An Original Research. J Pharm Bioallied Sci 2022, 14, S185–S187. [Google Scholar] [CrossRef] [PubMed]
- Brodny, J.; Tutak, M. Assessing the level of digitalization and robotization in the enterprises of the European Union Member States. PLoS One 2021, 16, e0254993. [Google Scholar] [CrossRef] [PubMed]
- Garard, J.; Wood, S.L.R.; Sabet-Kassouf, N.; Ventimiglia, A.; Matthews, H.D.; Ubalijoro, E.; Chaudhari, K.; Ivanova, M.; Luers, A.L. Moderate support for the use of digital tracking to support climate-mitigation strategies. One Earth 2022, 5, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Jarockyte, G.; Karabanovas, V.; Rotomskis, R.; Mobasheri, A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. Sensors (Basel) 2020, 20. [Google Scholar] [CrossRef]
- Gil Rosa, B.; Akingbade, O.E.; Guo, X.; Gonzalez-Macia, L.; Crone, M.A.; Cameron, L.P.; Freemont, P.; Choy, K.L.; Guder, F.; Yeatman, E.; et al. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens Bioelectron 2022, 203, 114050. [Google Scholar] [CrossRef]
- Vukajlović, J.M.; Panić-Janković, T. Mass Spectrometry in Clinical Laboratories. In Mass Spectrometry in Life Sciences and Clinical Laboratory; IntechOpen: 2021.
- Kitata, R.B.; Yang, J.C.; Chen, Y.J. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass Spectrom Rev 2022, e21781. [Google Scholar] [CrossRef] [PubMed]
- Carayannis, E.G.; Morawska-Jancelewicz, J. The Futures of Europe: Society 5.0 and Industry 5.0 as Driving Forces of Future Universities. Journal of the Knowledge Economy 2022, 13, 3445–3471. [Google Scholar] [CrossRef]
- Khare, S.; Chourasia, U.; Deen, A.J. Load balancing in cloud computing. In Proceedings of the Proceedings of the International Conference on Cognitive and Intelligent Computing, 2022; pp. 601–608.
- Soete, M.; De Bruycker, K.; Du Prez, F. Rewritable Macromolecular Data Storage with Automated Read-out. Angew Chem Int Ed Engl 2022, 61, e202116718. [Google Scholar] [CrossRef] [PubMed]
- de Koning, S.; Janssen, H.-G.; Brinkman, U.A.T. Modern methods of sample preparation for GC analysis. Chromatographia 2009, 69, 33–78. [Google Scholar] [CrossRef]
- Falaki, F. Sample preparation techniques for gas chromatography-gas chromatography-derivatization, sample preparation, application. London, United Kingdom: IntechOpen 2019, 10. [Google Scholar]
- Smith, P.A.; Lepage, C.J.; Lukacs, M.; Martin, N.; Shufutinsky, A.; Savage, P.B. Field-portable gas chromatography with transmission quadrupole and cylindrical ion trap mass spectrometric detection: Chromatographic retention index data and ion/molecule interactions for chemical warfare agent identification. International Journal of Mass Spectrometry 2010, 295, 113–118. [Google Scholar] [CrossRef]
- Evans, L.; Frith, J.; Saker, M. From Microverse to Metaverse: Modelling the Future through Today’s Virtual Worlds; Emerald Group Publishing: 2022.
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation (Camb) 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev 2019, 119, 10520–10594. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Jaillant, L.; Caputo, A. Unlocking digital archives: cross-disciplinary perspectives on AI and born-digital data. AI Soc 2022, 37, 823–835. [Google Scholar] [CrossRef]
- Ries, T.; Palkó, G. Born-digital archives. 2019; 1, 1–11. [Google Scholar]
- Sergi, C.M. Digital pathology: the time is now to bridge the gap between medicine and technological singularity. In Interactive Multimedia-Multimedia Production and Digital Storytelling; IntechOpen London, UK: 2019.
- Ahmed Alaa El-Din, E. ARTIFICIAL INTELLIGENCE IN FORENSIC SCIENCE: INVASION OR REVOLUTION? Egyptian Society of Clinical Toxicology Journal 2022, 10, 20–32. [Google Scholar] [CrossRef]
- Jones, A. Biochemical and physiological research on the disposition and fate of ethanol in the body. Medico legal aspects of alcohol, 5th edition, Lawyers and Judges publishing company, Tucson 2008.
- Jones, A.W. Driving under the influence of alcohol. Handbook of Forensic Medicine 2022, 3, 1387–1408. [Google Scholar]
- Katz, P.S. Expert Robot: Using Artificial Intelligence to Assist Judges in Admitting Scientific Expert Testimony. Albany Law Journal of Science & Technology 2014, 24. [Google Scholar]
- Whitford, A.B.; Yates, J.; Burchfield, A.; Anastasopoulos, J.L.; Anderson, D.M. The Adoption of Robotics by Government Agencies: Evidence from Crime Labs. Public Administration Review 2020, 80, 976–988. [Google Scholar] [CrossRef]
- Martins, C.; Dreij, K.; Costa, P.M. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures. Int J Environ Res Public Health 2019, 16. [Google Scholar] [CrossRef]
- Quireyns, M.; Boogaerts, T.; Van Wichelen, N.; Covaci, A.; Van Nuijs, A.L.N. State-of-the-art analytical approaches and strategies to assess disposal of drugs for wastewater-based epidemiology. Wiley Interdisciplinary Reviews: Forensic Science 2022, e1469. [Google Scholar] [CrossRef]
- Pélissier-Alicot, A.-L. Synthetic cannabinoids: State-of-the-art with a focus on fertility and development. In Cannabis and the Developing Brain; Elsevier: 2022; pp. 243-258.
- Aggarwal, K.; Mijwil, M.M.; Al-Mistarehi, A.-H.; Alomari, S.; Gök, M.; Alaabdin, A.M.Z.; Abdulrhman, S.H. Has the Future Started? The Current Growth of Artificial Intelligence, Machine Learning, and Deep Learning. Iraqi Journal for Computer Science and Mathematics 2022, 3, 115–123. [Google Scholar]
- Svensson, A.M.; Jotterand, F. Doctor ex machina: A critical assessment of the use of artificial intelligence in health care. In Proceedings of the The Journal of Medicine and Philosophy: A Forum for Bioethics and Philosophy of Medicine; 2022; pp. 155–178. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; Group, Q.-. . QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Pantic, I.; Paunovic, J.; Cumic, J.; Valjarevic, S.; Petroianu, G.A.; Corridon, P.R. Artificial neural networks in contemporary toxicology research. Chem Biol Interact 2023, 369, 110269. [Google Scholar] [CrossRef]
- Mehrvar, S.; Himmel, L.E.; Babburi, P.; Goldberg, A.L.; Guffroy, M.; Janardhan, K.; Krempley, A.L.; Bawa, B. Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. J Pathol Inform 2021, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Raju, B.; Jumah, F.; Ashraf, O.; Narayan, V.; Gupta, G.; Sun, H.; Hilden, P.; Nanda, A. Big data, machine learning, and artificial intelligence: a field guide for neurosurgeons. J Neurosurg 2020, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).