Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mathematical Optimisation of Magnetic Nanoparticles Diffusion in the Brain White Matter

Version 1 : Received: 25 November 2022 / Approved: 29 November 2022 / Online: 29 November 2022 (03:34:14 CET)

A peer-reviewed article of this Preprint also exists.

Yuan, T.; Yang, Y.; Zhan, W.; Dini, D. Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter. Int. J. Mol. Sci. 2023, 24, 2534. Yuan, T.; Yang, Y.; Zhan, W.; Dini, D. Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter. Int. J. Mol. Sci. 2023, 24, 2534.

Abstract

Magnetic Nanoparticles (MNPs) is a promising technique to cure brain diseases. On the one hand, by serving as drug carriers, they can bypass the blood-brain barrier and deliver drug molecules to the brain parenchyma; on the other hand, their transport trajectory can be manipulated by applying an external magnetic field. However, due to the complex microstructure of brain tissues, e.g. the anisotropy of white matter (WM), how to achieve desired drug distribution patterns, e.g. uniform distribution, by tuning the drug delivery system is largely unknown. Here, in this study, by adopting a mathematical model capable of capturing the diffusion trajectories of MNPs in the microstructures, we systematically investigated the effects of key parameters in the MNPs delivery system on the equivalent diffusion coefficient of MNPs in the microenvironment of brain WM. The results show that uniform distribution of MNPs in anisotropic tissues can be achieved by adjusting the particle size and magnetic field. We have not only obtained a deeper understanding on how to optimise the MNPs delivery system, it can also be anticipated that an improved mathematical model could even help to achieve complex drug distribution patterns in the complicated brain environment by designing an appropriate combination of the key parameters.

Keywords

Brain Diseases; Blood-Brain Barrier; Magnetic Field; Nanoparticle; Drug Delivery

Subject

Computer Science and Mathematics, Applied Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.