Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Diversity and Potential Multifunctionality of Archaeal CetZ Tubulin-like Cytoskeletal Proteins

Version 1 : Received: 23 November 2022 / Approved: 24 November 2022 / Online: 24 November 2022 (04:32:23 CET)

A peer-reviewed article of this Preprint also exists.

Brown, H.J.; Duggin, I.G. Diversity and Potential Multifunctionality of Archaeal CetZ Tubulin-like Cytoskeletal Proteins. Biomolecules 2023, 13, 134. Brown, H.J.; Duggin, I.G. Diversity and Potential Multifunctionality of Archaeal CetZ Tubulin-like Cytoskeletal Proteins. Biomolecules 2023, 13, 134.

Abstract

Tubulin superfamily (TSF) proteins are widespread and known for multifaceted roles as cytoskeletal proteins underpinning many basic cellular functions including morphogenesis, division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the dynamic cytoskeletal network of fibres, whereas the bacterial homolog FtsZ assembles the division ring at midcell. Functions of the lesser-known archaeal TSF proteins are beginning to be identified, and show surprising diversity, including homologs of tubulin and FtsZ, and a third archaea-specific family, CetZ, implicated in the regulation of cell shape and possibly other unknown functions. In this study, we defined sequence and structural characteristics of the CetZ family and CetZ1 and CetZ2 subfamilies, identified CetZ groups and diversity amongst archaea, and identified potential functional relationships through analysis of the genomic neighbourhoods of cetZ genes. At least three subfamilies of orthologous CetZ proteins were identified in the archaeal class Halobacteria, including CetZ1 and CetZ2 and a novel uncharacterized subfamily. CetZ1 and CetZ2 were correlated to one another and to cell shape and motility phenotypes across diverse Halobacteria. Amongst other known CetZ clusters in orders Archaeoglobales, Methanomicrobiales, Methanosarcinales, and Thermococcales, an additional uncharacterized group from Archaeoglobales and Methanomicrobiales affiliated strongly with Halobacteria CetZs, suggesting they originated via horizontal transfer. Subgroups of Halobacteria CetZ2 and Thermococcales CetZ genes were found adjacent to different type IV pili regulons, suggesting a potential utilization of CetZs by type IV systems. More broadly conserved cetZ gene neighbourhoods included nucleotide and cofactor biosynthesis (e.g., F420) and predicted cell surface sugar epimerase genes. The findings imply that CetZ subfamilies are involved in multiple functions linked to the cell surface, biosynthesis and motility.

Keywords

archaea; tubulin; FtsZ; CetZ; cytoskeleton

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.