Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Leaching of Gold and Copper From Printed Circuit Boards Under the Alternating Current Action in Hydrochloric Acid Electrolytes

Version 1 : Received: 4 October 2022 / Approved: 6 October 2022 / Online: 6 October 2022 (09:59:38 CEST)

A peer-reviewed article of this Preprint also exists.

Serga, V.; Zarkov, A.; Blumbergs, E.; Shishkin, A.; Baronins, J.; Elsts, E.; Pankratov, V. Leaching of Gold and Copper from Printed Circuit Boards under the Alternating Current Action in Hydrochloric Acid Electrolytes. Metals 2022, 12, 1953. Serga, V.; Zarkov, A.; Blumbergs, E.; Shishkin, A.; Baronins, J.; Elsts, E.; Pankratov, V. Leaching of Gold and Copper from Printed Circuit Boards under the Alternating Current Action in Hydrochloric Acid Electrolytes. Metals 2022, 12, 1953.

Abstract

Modern technologies for recycling electronic waste (e-waste) impose high economic efficiency and environmental safety requirements. Among existing technologies, hydrometallurgy is considered the most promising technology for e-waste recycling. Increasing attention to the chlorination method is associated with the complex recycling of low-grade ores containing noble metals and secondary polymetallic raw materials. In this paper, we propose a new scheme for leaching metals from computer printed circuits (PCBs) pre-crushed in a disintegrator: the processes of chlorine production and hydrochlorination are implemented in one reactor under the action of alternating current (AC) of industrial frequency (50 Hz). It was found that complete leaching of gold is achieved from fine fractions of raw materials containing 0.03% and 0.01% of the gold at an experiment duration of 2 hours, a current density of 0.66 A·cm-2, and a solid/liquid ratio of 8.6 g·L-1. Under the same conditions of the electrochemical leaching process from the fraction of raw material with a gold content of 0.08%, the degree of metal leaching is 80.5%. At the same time, with an increase in the copper content in the raw material from 1.40% to 6.13%, an increase in the degree of its leaching from 84.6% to 95.2%, respectively, is observed. These results will serve as a foundation for developing a complex technology for recovering valuable metals from PCBs.

Keywords

printed circuit boards; gold; copper; electrochemical leaching; alternating current

Subject

Chemistry and Materials Science, Metals, Alloys and Metallurgy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.