Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Non-invasive Probing of Winter Dormancy via Time-frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.)

Version 1 : Received: 25 September 2022 / Approved: 26 September 2022 / Online: 26 September 2022 (11:01:44 CEST)

A peer-reviewed article of this Preprint also exists.

Shurygin, B.; Konyukhov, I.; Khruschev, S.; Solovchenko, A. Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.). Plants 2022, 11, 2811. Shurygin, B.; Konyukhov, I.; Khruschev, S.; Solovchenko, A. Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.). Plants 2022, 11, 2811.

Abstract

Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in many plant species including tree crops leading to aberrant growth, flowering, and fruiting. Currently, research in this field is impeded by the lack of affordable non-invasive methods for on-line monitoring of dormancy. We report on an automatic framework for low-cost, long-term, and scalable dormancy studies in deciduous plants. The proposed method is based on continuous near-field sensing of the photosynthetic activity of shoots via pulse-amplitude modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli are subjected to frequency-domain analysis. The proposed approach allows to overcome the variance coming from diurnal changes of insolation and to derive estimations on the depth of dormancy. Our approach was validated over three seasons in an experimental apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the tress at different phases of dormancy) and the output of commonly used chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of freeze damages along with its potential limitations.

Keywords

chilling requirement; chlorophyll fluorescence; non-photochemical quenching; PAM; photoprotection; stress resilience; winter dormancy

Subject

Biology and Life Sciences, Biophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.