Preprint
Article

Global Dynamics of SARS-CoV-2 Infection with Antibody Response and the Impact of Impulsive Drug Therapy

Altmetrics

Downloads

217

Views

74

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 September 2022

Posted:

06 September 2022

You are already at the latest version

Alerts
Abstract
Mathematical modeling is crucial in investigating the pandemic of the ongoing coronavirus disease (COVID-19). The primary target area of the SARS-CoV-2 virus is epithelial cells in the human lower repertory track. During this viral infection, infected cells can initiate innate and adaptive immune responses to viral infection. Immune response in COVID -19 infection can lead to longer recovery time and more severe secondary complications. We formulate a target cell limited mathematical model by incorporating a saturation term for SARS-CoV-2 infected epithelial cell loss reliant on infected cell levels. Forward and backward bifurcation between disease-free and endemic equilibrium points has been analyzed. Global stability of both disease-free and endemic equilibrium is provided. We have seen that the disease-free equilibrium is globally stable for $R_0<1$, and endemic equilibrium exists and is globally stable for $R_0>1$. Impulsive application of drug dosing has been applied for the treatment of covid-19 patients. Also, the dynamics of the impulsive system are discussed when a patient takes drug holidays. The numerical simulations are performed in support of our analytical findings and for the qualitative analysis of the system's dynamics with and without impulse drug dosing.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated