Preprint
Article

No-Show in Medical Appointments with Machine Learning Techniques – A Systematic Literature Review

Altmetrics

Downloads

191

Views

126

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 August 2022

Posted:

01 September 2022

You are already at the latest version

Alerts
Abstract
No-show appointments in healthcare is a problem faced by medical centers around the world, and understand the factors associated with the no-show behavior is essential. In the last decades, artificial intelligence took place in the medical field and machine learning algorithms can work as a efficient tool to understand the patients behavior and to achieve better medical appointment allocation in scheduling systems. In this work, we provide a systematic literature review (SLR) of machine learning techniques applied to no-show appointments aiming at establishing the current state-of-the-art. Based on a SLR following the Kitchenham methodology, 24 articles were found and analyzed, in which the characteristics of the database, algorithms and performance metrics of each studies were synthesized. Results regarding which factors have a higher impact on missed appointment rates were analyzed too. The results indicate that the most appropriate algorithms for building the models are decision tree algorithms. Furthermore, the most significant determinants of no-show were related to the patients age, whether the patient missed a previous appointment, and the distance between the appointment and the patients scheduling.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated