Preprint
Article

Effects of Data Augmentations on Speech Emotion Recognition

Altmetrics

Downloads

316

Views

108

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 July 2022

Posted:

04 August 2022

You are already at the latest version

Alerts
Abstract
Data augmentation techniques recently gained more adoption in speech processing, including speech emotion recognition. Although more data tends to be more effective, there may be a trade-off in which more data will not provide a better model. This paper reports experiments on investigating the effects of data augmentation in speech emotion recognition. The investigation aims at finding the most useful type of data augmentation and the number of data augmentations for speech emotion recognition. The experiments are conducted on the Japanese Twitter-based emotional speech corpus. The results show that for speaker-independent data, two data augmentations with glottal source extraction and silence removal exhibited the best performance among others, even with more data augmentation techniques. For the text-independent data (including speaker and text-independent), more data augmentations tend to improve speech emotion recognition performances. The results highlight the trade-off between the number of data augmentation and the performance of speech emotion recognition showing the necessity to choose a proper data augmentation technique for a specific application.
Keywords: 
Subject: Computer Science and Mathematics  -   Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated