Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR images

Version 1 : Received: 27 July 2022 / Approved: 29 July 2022 / Online: 29 July 2022 (07:37:34 CEST)

A peer-reviewed article of this Preprint also exists.

Verma, K.; Kumar, S.; Paydarfar, D. Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR Images. Diagnostics 2022, 12, 2055. Verma, K.; Kumar, S.; Paydarfar, D. Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR Images. Diagnostics 2022, 12, 2055.

Abstract

Lesion studies are crucial in establishing brain-behavior relationships, and accurately segmenting the lesion represents the first step in achieving this. Manual lesion segmentation is the gold standard for chronic strokes. However, it is labor-intensive, subject to bias, and limits sample size. Therefore, our objective is to develop an automatic segmentation algorithm for chronic stroke lesions on T1-weighted MR images. Methods: To train our model, we utilized an open-source dataset: ATLAS v2.0 (Anatomical Tracings of Lesions After Stroke). We partitioned the dataset of 655 T1 images with manual segmentation labels into five subsets and performed a 5-fold cross-validation to avoid overfitting of the model. We used a deep neural network (DNN) architecture for model training. Results: To evaluate the model performance, we used three metrics that pertain to diverse aspects of volumetric segmentation including shape, location, and size. The Dice similarity coefficient (DSC) compares the spatial overlap between manual and machine segmentation. The average DSC was 0.65 (0.61- 0.67; 95% bootstrapped CI). Average symmetric surface distance (ASSD) measures contour distances between the two segmentations. ASSD between manual and automatic segmentation was 12mm. Finally, we compared the total lesion volumes and the Pearson correlation coefficient (ρ) between the manual and automatically segmented lesion volumes, which was 0.97(p-value < 0.001). Conclusions: We present the first automated segmentation model trained on a large multicentric dataset. This model will enable automated on-demand processing of MRI scans and quantitative chronic stroke lesion assessment.

Keywords

Stroke; automatic segmentation; deep neural networks; 3D-UNet; lesion studies; vascular neurology; precision medicine

Subject

Medicine and Pharmacology, Neuroscience and Neurology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.