Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

On the Role of Robotic Assistance in Upper-Limb Neurorehabilitation

Version 1 : Received: 5 June 2022 / Approved: 6 June 2022 / Online: 6 June 2022 (10:08:13 CEST)

How to cite: Nehrujee, A.; Srinivasan, S.; Balasubramanian, S. On the Role of Robotic Assistance in Upper-Limb Neurorehabilitation. Preprints 2022, 2022060083. https://doi.org/10.20944/preprints202206.0083.v1 Nehrujee, A.; Srinivasan, S.; Balasubramanian, S. On the Role of Robotic Assistance in Upper-Limb Neurorehabilitation. Preprints 2022, 2022060083. https://doi.org/10.20944/preprints202206.0083.v1

Abstract

An early hypothesis in robot-assisted stroke therapy was that sensorimotor stimulation through robotic assistance is beneficial for recovery. Despite 25 years of upper-limb rehabilitation robotics research, this hypothesis remains untested barring a few studies with small sample sizes. This review aims to provide a critical summary of the current state of this hypothesis by collating evidence from rehabilitation robotics and other related therapeutic approaches. The review starts with a causal model to expose the various direct and indirect routes through which robotic assistance can aid sensorimotor recovery. The indirect routes include the influence of robotic assistance on therapy intensity, patient motivation, and active participation. The direct route is through changes in cortical networks through Hebbian(-like) learning and changes in peripheral tissue properties. There is currently mixed evidence for the direct causal effect of robotic assistance on recovery from the upper-limb rehabilitation robotics literature. However, evidence from the neuromuscular electrical stimulation literature provides some support for this causal role. Based on the data at hand, we hypothesize that the enhanced movement-related sensory feedback from robotic assistance has a direct, possibly small, causal role in the sensorimotor recovery of the upper-limb, and this effect might be detectable with high-intensity therapy. Large, high-intensity, controlled studies are warranted to support or refute the role of robotic assistance on recovery, which is both scientifically and practically important.

Keywords

robotic assistance; Hebbian learning; sensorimotor recovery; upper-limb rehabilitation; stroke; re-habilitation robots

Subject

Medicine and Pharmacology, Orthopedics and Sports Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.