Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Artificial Neuron-based Model for a Hybrid Real-Time System: Induction Motor Case Study

Version 1 : Received: 23 May 2022 / Approved: 25 May 2022 / Online: 25 May 2022 (11:17:19 CEST)

A peer-reviewed article of this Preprint also exists.

Capel, M.I. Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study. Mathematics 2022, 10, 3410, doi:10.3390/math10183410. Capel, M.I. Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study. Mathematics 2022, 10, 3410, doi:10.3390/math10183410.

Abstract

A correct system design can be systematically obtained from a specification model of a real-time system that integrates hybrid measurements in a realistic industrial environment, this has been carried out through complete Matlab / Simulink / Stateflow models. However, there is a widespread interest in carrying out that modeling by resorting to Machine Learning models, which can be understood as Automated Machine Learning for Real-time systems that present some degree of hybridization. An induction motor controller which must be able to maintain a constant air flow through a filter is one of these systems and it is discussed in the paper as a study case of closed-loop control system. The article discusses a practical application of ML methods that demonstrates how to replace such closed loop in industrial control systems with a Simulink block generated from neural networks to show how the proposed procedure can be applied to derive complete hybrid system designs with artificial neural networks (ANN). In the proposed ANN-based method to design a real-time hybrid system with continuous and discrete components, we use a typical design of a neural network, in which we define the usual phases: training, validation, and testing. The generated output of the model is made up of reference variables values of the cyber-physical system, which represent the functional and dynamic aspects of model. They are used to feed Simulink/Stateflow blocks in the real target system.

Keywords

Quality real-time systems; Automated Machine Learning; Real-time embedded control systems; Cyber-physical systems; Neural Networks

Subject

Computer Science and Mathematics, Applied Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.