Preprint
Article

This version is not peer-reviewed.

Transpiration Responses of Herbicide-Resistant and -Susceptible Palmer amaranth [Amaranthus palmeri (S.) Wats.] to Progressively Drying Soil

A peer-reviewed article of this preprint also exists.

Submitted:

19 January 2022

Posted:

21 January 2022

You are already at the latest version

Abstract
Drought events are predicted to become more prevalent in the future. Evaluating the performance of herbicide-resistant and susceptible weed ecotypes to progressive drought can provide insights into whether resistance trait(s) increased or reduced the fitness of a resistant population. Two experiments were conducted in the greenhouse between January and May 2021 to evaluate drought tolerance differences between Palmer amaranth accessions resistant to S-metolachlor or glyphosate and their susceptible counterparts. The accessions used were: S-metolachlor-resistant (17TUN-A), a susceptible standard (09CRW-A), and glyphosate-resistant (22 to 165 EPSPS copies) and glyphosate-susceptible (3 to 10 EPSPS copies) plants from accession 16CRW-D. Daily transpiration of each plant was measured. The daily transpiration rate was converted to normalized transpiration ratio (NTR) using a double-normalization procedure. The daily soil water content was expressed as a fraction of transpirable soil water (FTSW). The threshold FTSW (FTSWcr), after which NTR decreases linearly, was estimated using a two-segment linear regression analysis. The data showed differences between S-metolachlor- resistant and -susceptible accessions (P ≤ 0.05). The FTSW remaining in the soil at the breakpoint for the S-metolachlor-susceptible accession (09CRW-A) was 0.17±0.007. The FTSW remaining in the soil at the breakpoint for the S-metolachlor-resistant accession (17TUN-A) was 0.23±0.004. Although the mechanism endowing resistance to S-metolachlor might have contributed to increased drought tolerance, follow-up experiments are needed to verify this finding. Increased EPSPS copy number did not improve drought tolerance of Palmer amaranth.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated