Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Machine Learning Schemes for Anomaly Detection in Solar Power Plants

Version 1 : Received: 29 December 2021 / Approved: 30 December 2021 / Online: 30 December 2021 (11:51:18 CET)

A peer-reviewed article of this Preprint also exists.

Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies 2022, 15, 1082. Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies 2022, 15, 1082.

Abstract

The rapid industrial growth in solar energy is gaining increasing interest in renewable power from smart grids and plants. Anomaly detection in photovoltaic (PV) systems is a demanding task. In this sense, it is vital to utilize recent advances in machine learning to accurately and timely detect different anomalies and condition monitoring. This paper addresses this issue by evaluating different machine learning techniques and schemes and showing how to apply these approaches to solve anomaly detection and detect faults on photovoltaic components. For this, we apply distinct state-of-the-art machine learning techniques (AutoEncoder Long Short-Term Memory (AE-LSTM), Facebook-Prophet, and Isolation Forest) to detect faults/anomalies and evaluate their performance. These models shall identify the PV system's healthy and abnormal actual behaviors. Our results provide clear insights to make an informed decision, especially with experimental trade-offs for such complex solution space.

Keywords

anomaly detection; machine learning; comparison analysis; renewable energy; Solar Power plants

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.