Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies2022, 15, 1082.
Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies 2022, 15, 1082.
Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies2022, 15, 1082.
Ibrahim, M.; Alsheikh, A.; Awaysheh, F.M.; Alshehri, M.D. Machine Learning Schemes for Anomaly Detection in Solar Power Plants. Energies 2022, 15, 1082.
Abstract
The rapid industrial growth in solar energy is gaining increasing interest in renewable power from smart grids and plants. Anomaly detection in photovoltaic (PV) systems is a demanding task. In this sense, it is vital to utilize recent advances in machine learning to accurately and timely detect different anomalies and condition monitoring. This paper addresses this issue by evaluating different machine learning techniques and schemes and showing how to apply these approaches to solve anomaly detection and detect faults on photovoltaic components. For this, we apply distinct state-of-the-art machine learning techniques (AutoEncoder Long Short-Term Memory (AE-LSTM), Facebook-Prophet, and Isolation Forest) to detect faults/anomalies and evaluate their performance. These models shall identify the PV system's healthy and abnormal actual behaviors. Our results provide clear insights to make an informed decision, especially with experimental trade-offs for such complex solution space.
Keywords
anomaly detection; machine learning; comparison analysis; renewable energy; Solar Power plants
Subject
Computer Science and Mathematics, Artificial Intelligence and Machine Learning
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.