Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

High-Resolution, Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-modular Coupling

Version 1 : Received: 19 December 2021 / Approved: 20 December 2021 / Online: 20 December 2021 (14:03:29 CET)

A peer-reviewed article of this Preprint also exists.

Carter, C.W., Jr.; Popinga, A., Jr.; Bouckaert, R.; Wills, P.R. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int. J. Mol. Sci. 2022, 23, 1520. Carter, C.W., Jr.; Popinga, A., Jr.; Bouckaert, R.; Wills, P.R. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int. J. Mol. Sci. 2022, 23, 1520.

Abstract

The provenance of the aminoacyl-tRNA synthetases (aaRS) poses challenging questions because of their role in the emergence and evolution of genetic coding. We investigate evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—residue-by-residue conservation, its variance, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from distinct, successive genetic sources. These data are especially significant in light of: (i) experimental fragmentations of the Class I scaffold into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that two of these partitions arose from an ancestral Class I aaRS gene encoding a Class II ancestor in frame on the opposite strand. Phylogenetic metrics of different modules vary in accordance with their presumed functionality. A 46-residue Class I “protozyme” roots the Class I molecular tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting is consistent with near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved long after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.

Keywords

BEAST2; DensiTree; protein mosaic structure; RNA World hypothesis

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.