Wang, Y.; Cao, J.; Liu, Y.; Zhu, Y.; Fang, X.; Huang, Q.; Chen, J. Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data. Remote Sens.2022, 14, 256.
Wang, Y.; Cao, J.; Liu, Y.; Zhu, Y.; Fang, X.; Huang, Q.; Chen, J. Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data. Remote Sens. 2022, 14, 256.
Wang, Y.; Cao, J.; Liu, Y.; Zhu, Y.; Fang, X.; Huang, Q.; Chen, J. Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data. Remote Sens.2022, 14, 256.
Wang, Y.; Cao, J.; Liu, Y.; Zhu, Y.; Fang, X.; Huang, Q.; Chen, J. Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data. Remote Sens. 2022, 14, 256.
Abstract
The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will inform agricultural drought and flood disaster assessment and early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Then, we used ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data showed a high correlation with local soil measurements at nine sites. We then analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations showed an increasing trend. We then investigated whether there were abrupt soil moisture changes at each station. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized by “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mainly distributed in the Yangzhou and Huai'an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mainly located in northern Xuzhou.
Keywords
ESA CCI; soil moisture; EEMD; Mann-Kendall; temporal and spatial variation; Jiangsu water supply area (JWSA)
Subject
Environmental and Earth Sciences, Soil Science
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.