Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mitigation of Particulate Matter and Airborne Pathogens in Swine Barn Emissions with Filtration and UV-A Photocatalysis

Version 1 : Received: 8 October 2021 / Approved: 11 October 2021 / Online: 11 October 2021 (14:05:44 CEST)

A peer-reviewed article of this Preprint also exists.

Lee, M.; Koziel, J.A.; Macedo, N.R.; Li, P.; Chen, B.; Jenks, W.S.; Zimmerman, J.; Paris, R.V. Mitigation of Particulate Matter and Airborne Pathogens in Swine Barn Emissions with Filtration and UV-A Photocatalysis. Catalysts 2021, 11, 1302. Lee, M.; Koziel, J.A.; Macedo, N.R.; Li, P.; Chen, B.; Jenks, W.S.; Zimmerman, J.; Paris, R.V. Mitigation of Particulate Matter and Airborne Pathogens in Swine Barn Emissions with Filtration and UV-A Photocatalysis. Catalysts 2021, 11, 1302.

Abstract

This study evaluated the use of filtration and UV-A photocatalysis for the reduction of particulate matter (PM) and airborne bacterial pathogens in swine barns. Two MERV filters (8 and 15) were used to mitigate PM concentrations measured at the PM 1, PM 2.5, respirable PM, and PM 10 ranges. Filtration was also used to generate different levels of airborne pathogens to be treated by UV-A. Results show that MERV 8 and 15 filters effectively reduced PM concentrations (96-98%) in air exhausted from a swine barn (p ranged from < 0.01 to 0.04). UV-A photocatalysis did not mitigate PM concentrations. UV-A photocatalysis treatment reduced measured colony-forming units (CFUs) by 15-95%. The CFU percent reduction was higher when airborne PM concentration was low. The numeric results suggested a real mitigation effect despite p-values that did not meet the usual statistical cut-off of <0.05 for significance due to the large variability of the CFU control samples. Normalization of measured airborne pathogen concentrations by smaller PM size range concentrations led to emerging significant treatment differences for CFUs. A significant decrease (~60% reduction; p < 0.03) in the concentration of viable airborne bacteria was shown for all PM below the 10-micron range.

Keywords

air pollution control; biosecurity; animal diseases; ultraviolet light; advanced oxidation; filtration; environmental technology

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.