Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Colloidal Shear Thickening Fluids Using Variable Shaped Functional Star Particles: A Molecular Dynamics Study

Version 1 : Received: 8 September 2021 / Approved: 9 September 2021 / Online: 9 September 2021 (11:45:32 CEST)

A peer-reviewed article of this Preprint also exists.

Salehin, R.; Xu, R.-G.; Papanikolaou, S. Colloidal Shear-Thickening Fluids Using Variable Functional Star-Shaped Particles: A Molecular Dynamics Study. Materials 2021, 14, 6867. Salehin, R.; Xu, R.-G.; Papanikolaou, S. Colloidal Shear-Thickening Fluids Using Variable Functional Star-Shaped Particles: A Molecular Dynamics Study. Materials 2021, 14, 6867.

Abstract

Complex colloidal fluids, depending on particulates’ shapes and packing fractions, may have a wide range of shear thinning and thickening behaviors. A particular interesting way to transition between different types of such behavior is by infusing functional complex particles that can be manufactured using modern techicques such as 3D printing. In this paper, we display 2D molecular dynamics simulations of such fluids with infused star-shaped functional particles, with variable leg length and number of legs, as they are infused in a non-interacting, coarse-grained fluid. We vary the packing fraction (ϕ) of the system, and for each different system we apply shear with various strain rate that turns the fluid into a jammed state and rise the apparent viscosity of fluid. We demonstrate the dependence of viscosity with the particles’ packing fraction. We show the role of shape and design dependence of the functional particles towards the transition to a shear thickening fluid .

Keywords

molecular dynamics; functional particles; jamming; shear thickening; viscosity; diffusivity

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.