Preprint Communication Version 1 Preserved in Portico This version is not peer-reviewed

Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by a Helmholtz Coil

Version 1 : Received: 31 July 2021 / Approved: 2 August 2021 / Online: 2 August 2021 (13:32:53 CEST)

How to cite: Lapucci, T.; Troiano, L.; Carobbi, C.; Capineri, L. Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by a Helmholtz Coil. Preprints 2021, 2021080045 (doi: 10.20944/preprints202108.0045.v1). Lapucci, T.; Troiano, L.; Carobbi, C.; Capineri, L. Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by a Helmholtz Coil. Preprints 2021, 2021080045 (doi: 10.20944/preprints202108.0045.v1).

Abstract

Usually, towed hydrophone arrays are instrumented with a set of compasses. Data from these sensors are utilized while beamforming the acoustic signal for target bearing estimation. However, elements of the hydrophone array mounted in the neighborhood of a compass can affect the Earth’s magnetic field detection. The effects depend upon the kind of elements present in the platform hosting the compass. If the disturbances are constant in time, they can be compensated for by means of a magnetic calibration. This process is commonly known as soft and hard iron compensation. In this paper, a solution is presented to carry out the magnetic calibration of a COTS (Commercial Off The Shelf) digital compass without unattainable sensor motion. This approach is particularly suited in applications where a physical rotation of the platform that hosts the sensor is unfeasible. In our case, the platform consists in an assembled and operational towed hydrophone array. A standard calibration process relies on physical rotation of the platform and thus on the use of the geomagnetic field as a reference during the compensation. As a variation on this approach, we provide to the sensor an artificial reference magnetic field to simulate the unfeasible physical rotation. We obtain this by using a tri-axial Helmholtz coil, which enables programmability of the reference magnetic field and assures the required field uniformity. In our work, the simulated geomagnetic field is characterized in terms of its uncertainty. The analysis indicates that our method and experimental set-up represent a suitably accurate approach for the soft and hard iron compensation of the compasses equipped in the hydrophone array under test.

Keywords

Magnetic Instruments; Digital compass; Soft and Hard iron compensation; Helmholtz coil; Towed hydrophone array

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.