Working Paper Article Version 1 This version is not peer-reviewed

Effect of Loading Frequency Ratio on Multiaxial Fatigue Failure of 30CrMnSiA Steel

Version 1 : Received: 30 May 2021 / Approved: 31 May 2021 / Online: 31 May 2021 (12:13:24 CEST)

A peer-reviewed article of this Preprint also exists.

Liu, T.; Qi, X.; Shi, X.; Gao, L.; Zhang, T.; Zhang, J. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel. Materials 2021, 14, 3968. Liu, T.; Qi, X.; Shi, X.; Gao, L.; Zhang, T.; Zhang, J. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel. Materials 2021, 14, 3968.

Abstract

Multiaxial fatigue experiments under asynchronous loadings with four different loading frequency ratios were carried out on 30CrMnSiA steel. The experimental results show that the fatigue life decreases when the axial or torsion frequency increases from 1 to 2, while there is no significant change when the axial or torsion frequency increases from 2 to 4. The surface crack paths are observed and show that cracks initiate on the maximum shear stress amplitude planes, propagate approximately tens of microns, and then turn to propagate along the maximum normal stress planes. The number of secondary cracks increases when the axial or torsion frequency increases. Subsequently, the Bannantine-Socie and Wang-Brown cycle counting methods along with various multiaxial fatigue criteria and Palmgren-Miner’s cumulative damage rule were used for fatigue life prediction. The experimental results are consistent with the fatigue life predicted by the Bannantine-Socie method with the section critical plane criterion for 30CrMnSiA steel under asynchronous loading paths.

Keywords

30CrMnSiA steel; crack growth path; fatigue life prediction; asynchronous loading; frequency ratio

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.