Görür, O.C.; Yu, X.; Sivrikaya, F. Integrating Predictive Maintenance in Adaptive Process Scheduling for a Safe and Efficient Industrial Process. Appl. Sci.2021, 11, 5042.
Görür, O.C.; Yu, X.; Sivrikaya, F. Integrating Predictive Maintenance in Adaptive Process Scheduling for a Safe and Efficient Industrial Process. Appl. Sci. 2021, 11, 5042.
Görür, O.C.; Yu, X.; Sivrikaya, F. Integrating Predictive Maintenance in Adaptive Process Scheduling for a Safe and Efficient Industrial Process. Appl. Sci.2021, 11, 5042.
Görür, O.C.; Yu, X.; Sivrikaya, F. Integrating Predictive Maintenance in Adaptive Process Scheduling for a Safe and Efficient Industrial Process. Appl. Sci. 2021, 11, 5042.
Abstract
Predictive maintenance (PM) algorithms are widely applied for detecting operational anomalies on industrial processes to trigger maintenance before a possible breakdown; however, much less focus has been devoted to the use of such PM predictions as feedback in automated process control mechanisms. They usually integrate preventive solutions to protect the machines, usually causing downtimes. The premise of this study is to develop a holistic adaptive process scheduling mechanism that incorporates PM analysis as a safety component to optimize the operation mode of an industrial process toward preventing breakdowns while maintaining its availability and operational state, thereby reducing downtimes. As PM is largely a data-driven approach; hence, relies on the setup, we first compare different PM approaches and identify a one-class support vector machine (OCSVM) as the best performing option for the anomaly detection on our setup. Then, we propose a novel pipeline to integrate maintenance predictions into a real-time adaptive process scheduling mechanism. It schedules for the most suitable operation, i.e., optimizing for machine health and process efficiency, according to the abnormal readings. To demonstrate the pipeline on action, we implement our approach on a small-scale conveyor belt system utilizing our Internet of Things (IoT) framework. The results show that our PM-based adaptive process control provides an efficient process with less or no downtime. We also conclude that a PM approach does not provide sufficient efficiency without its integration into an autonomous planning process.
Keywords
Predictive Maintenance; Predictive maintenance-based process scheduling; Real-time anomaly detection
Subject
Computer Science and Mathematics, Computer Science
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.