Preprint
Article

This version is not peer-reviewed.

Augmenting Paraphrase Generation with Syntax Information using Graph Convolutional Networks

A peer-reviewed article of this preprint also exists.

Submitted:

30 March 2021

Posted:

31 March 2021

You are already at the latest version

Abstract
Paraphrase generation is an important yet challenging task in NLP. Neural network-based approaches have achieved remarkable success in sequence-to-sequence(seq2seq) learning. Previous paraphrase generation work generally ignores syntactic information regardless of its availability, with the assumption that neural nets could learn such linguistic knowledge implicitly. In this work we make an endeavor to probe into the efficacy of explicit syntactic information for the task of paraphrase generation. Syntactic information can appear in the form of dependency trees which could be easily acquired from off-the-shelf syntactic parsers. Such tree structures could be conveniently encoded via graph convolutional networks(GCNs) to obtain more meaningful sentence representations, which could improve generated paraphrases. Through extensive experiments on four paraphrase datasets with different sizes and genres, we demonstrate the utility of syntactic information in neural paraphrase generation under the framework of seq2seq modeling. Specifically, our GCN-enhanced models consistently outperform their syntax-agnostic counterparts in multiple evaluation metrics.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated