Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Divergent Proteomic Responses Offer Insights Into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios

Version 1 : Received: 1 March 2021 / Approved: 2 March 2021 / Online: 2 March 2021 (15:52:01 CET)

A peer-reviewed article of this Preprint also exists.

Stuhr, M.; Cameron, L.P.; Blank-Landeshammer, B.; Reymond, C.E.; Doo, S.S.; Westphal, H.; Sickmann, A.; Ries, J.B. Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans 2021, 2, 281-314. Stuhr, M.; Cameron, L.P.; Blank-Landeshammer, B.; Reymond, C.E.; Doo, S.S.; Westphal, H.; Sickmann, A.; Ries, J.B. Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans 2021, 2, 281-314.

Journal reference: Oceans 2021, 2, 17
DOI: 10.3390/oceans2020017

Abstract

Reef-dwelling calcifiers face numerous environmental stresses associated with anthropogenic carbon dioxide emissions, including ocean acidification and warming. Photosymbiont-bearing calcifiers, such as large benthic foraminifera, are particularly sensitive. To gain insight into their resistance and adaptive mechanisms to climate change, Amphistegina lobifera from the Gulf of Aqaba were cultured under elevated pCO2 (492, 963, and 3182 ppm) fully-crossed with elevated temperature (28°C and 31°C) for two months. Differential protein abundances in host and photosymbionts amongst treatments were investigated alongside physiological responses and microenvironmental pH variations. Over 1000 proteins were identified, of which one-third varied significantly between treatments. Thermal stress induced protein depletions, along with reduced holobiont growth. Elevated pCO2 caused only minor proteomic alterations and color changes. However, combined stressors reduced pore sizes and increased microenvironmental pH, indicating adaptive modifications to gas exchange. Notably, substantial proteomic variations at moderate-pCO2 and 31°C indicate cellular stress, while stable physiological performance at high-pCO2 and 31°C is scrutinized by putative decreases in test stability. Our experiment shows that the effects of climate change can be missed when stressors are assessed in isolation, and that physiological responses should be assessed across organismal levels to make more realistic predictions for the fate of reef calcifiers.

Keywords

Amphistegina lobifera; Red Sea; pH microsensor; global warming; thermal stress; ocean acidification; large benthic foraminifera; coral reef; LC-MS/MS proteomics; photosymbiotic calcifier

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.