Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic

Version 1 : Received: 4 December 2020 / Approved: 6 December 2020 / Online: 6 December 2020 (18:16:16 CET)

A peer-reviewed article of this Preprint also exists.

Göhlich, D.; Nagel, K.; Syré, A.M.; Grahle, A.; Martins-Turner, K.; Ewert, R.; Miranda Jahn, R.; Jefferies, D. Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic. Sustainability 2021, 13, 839. Göhlich, D.; Nagel, K.; Syré, A.M.; Grahle, A.; Martins-Turner, K.; Ewert, R.; Miranda Jahn, R.; Jefferies, D. Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic. Sustainability 2021, 13, 839.

Abstract

This paper presents a new methodology to derive and analyze strategies for a fully decarbonized urban transport system which combines conceptual vehicle design, a large-scale agent-based transport simulation, operational cost analysis, and life cycle assessment for a complete urban region. The holistic approach evaluates technical feasibility, system cost, energy demand, transportation time and sustainability-related impacts of various decarbonization strategies. In contrast to previous work, the consequences of a transformation to fully decarbonized transport system scenarios are quantified across all traffic segments, considering procurement, operation and disposal. The methodology can be applied to arbitrary regions and transport systems. Here, the metropolitan region of Berlin is chosen as a demonstration case. First results are shown for a complete conversion of all traffic segments from conventional propulsion technology to battery electric vehicles. The transition of private individual traffic is analyzed regarding technical feasibility, energy demand and environmental impact. Commercial goods, municipal traffic and public transport are analyzed with respect to system cost and environmental impacts. We can show a feasible transition path for all cases with substantially lower greenhouse gas emissions. Based on current technologies and today’s cost structures our simulation shows a moderate increase in total systems cost of 13-18%.

Keywords

Decarbonization Methodology; Urban Traffic; Agent-Based Transport Simulation; Life Cycle Assessment; Sustainability; Total Cost of Ownership; Charging Concepts; Conceptual Vehicle Design; Battery Electric Vehicles; Vehicle Routing Problem

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.