Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Shale Compaction Kinetics

Version 1 : Received: 13 October 2020 / Approved: 14 October 2020 / Online: 14 October 2020 (10:47:42 CEST)
Version 2 : Received: 29 November 2020 / Approved: 1 December 2020 / Online: 1 December 2020 (09:24:32 CET)

How to cite: Smith, J.; Smith-Rowland, E. Shale Compaction Kinetics. Preprints 2020, 2020100299. https://doi.org/10.20944/preprints202010.0299.v1 Smith, J.; Smith-Rowland, E. Shale Compaction Kinetics. Preprints 2020, 2020100299. https://doi.org/10.20944/preprints202010.0299.v1

Abstract

1 Abstract The grain-to-grain stress vertically in sediments is given by the overburden less the pore fluid pressure, σ, divided by the fraction of the horizontal area which is the supporting matrix , (1 − φ), φ being the porosity. It is proposed that the fractional reduction of this ratio, Λ, with time is given by the product of φ 4m/3) , (1 − φ) 4n/3 , and one or more Arrhenius functions A exp(−E/RT ) with m and n close to 1. This proposal is tested for shale sections in six wells from around the world for which porosity-depth data are available. Good agreement is obtained above 30-40 C. A single activation energy of 23+-5 kJ/mole, indicating pressure solution of quartz, 24 kJ/mol, was obtained. The average value of m is 1, indicating fractal pore-matrix spaces and water-wet interfaces. Grain-to -grain interfaces may be fractal with m close to 1, but can have lower values suggesting smooth surfaces and even grain-to-grain welding. Results are independent of over- or under-pressure of pore water. This model explains shale compaction quantitatively.

Keywords

shale compaction, kinetics, activation energy, pore interfaces, grain interfaces, fractals

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.