Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Oxidative Damage of Mussels Living in Seawater Enriched with Trace Metals, from the Viewpoint of Proteins Expression and Modification

Version 1 : Received: 25 September 2020 / Approved: 26 September 2020 / Online: 26 September 2020 (14:46:39 CEST)

A peer-reviewed article of this Preprint also exists.

Kournouto, G.G.; Giannopoulou, P.C.; Sazakli, E.; Leotsinidis, M.; Kalpaxis, D.L.; Dinos, G.P. Oxidative Damage of Mussels Living in Seawater Enriched with Trace Metals, from the Viewpoint of Proteins Expression and Modification. Toxics 2020, 8, 89. Kournouto, G.G.; Giannopoulou, P.C.; Sazakli, E.; Leotsinidis, M.; Kalpaxis, D.L.; Dinos, G.P. Oxidative Damage of Mussels Living in Seawater Enriched with Trace Metals, from the Viewpoint of Proteins Expression and Modification. Toxics 2020, 8, 89.

Abstract

The impact of metals bioaccumulation on marine organisms is under investigation. This study was designed to determine the association of oxidative stress in mussels Mytilus galloprovincialis induced by seawater enriched with trace metals with protein synthesis. Mussels were exposed to 40 μg/L Cu, 30 μg/L Hg, or 100 μg/L Cd for 5 and 15 days, and the pollution effect was evaluated by measuring established oxidative biomarkers. The results showed damage on the protein synthesis machine integrity and specifically, on translation factors and ribosomal proteins expression and modifications. Exposure of mussels to all metals caused oxidative damage that was milder in the cases of Cu and Hg, and more pronounced for Cd. However, after prolonged exposure of mussels to Cd (15 days), the effects receded. These changes that perturb protein biosynthesis can serve as a great tool for elucidating the mechanisms of toxicity and could be integrated in biomonitoring programs.

Keywords

copper; mercury; cadmium; oxidative stress; protein carbonylation; translation factors; oxidative stress biomarkers

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.