Article
Version 1
Preserved in Portico This version is not peer-reviewed
Validation of Sentinel-3 SAR Level-2 and Level-3 Products in the Baltic Sea and Estonian lakes
Version 1
: Received: 25 August 2020 / Approved: 26 August 2020 / Online: 26 August 2020 (12:35:30 CEST)
A peer-reviewed article of this Preprint also exists.
Journal reference: Remote Sensing 2020
DOI: 10.3390/rs12244062
Abstract
Multimission satellite altimetry (e.g. ERS, Envisat, TOPEX/Poseidon, Jason) data have enabled a synoptic view of ocean variations in the past decades, including sea-level rise and mesoscale circulations. Since 2016, the Sentinel-3 mission has provided better spatial and temporal sampling compared with its predecessors. The Sentinel-3 Ku/C Radar Altimeter (SRAL) is one of the synthetic aperture radar altimeters (SAR Altimeter) which is more precise in coastal and lake observations. In this study, we validate Sentinel-3 Level-2 products in Baltic Sea coastal areas and two lakes in Estonia. Moreover, the Copernicus Marine Environment Monitoring Service (CMEMS) Level-3 sea-level anomaly data and the Nucleus for European Modelling of the Ocean (NEMO) reanalysis model outcomes are compared with measurements from a tide gauge network. A dense in situ water level network deployed along the coast for geodetic observation was utilised to provide ground truths for validating altimetry results. Three validation methods were used for Level-2 data: (i) collocated Sentinel-3 and GNSS ship measurements; (ii) a national geoid model (EST-GEOID2017) with sea-level anomaly correction; (iii) collocated Sentinel-3 and buoy measurements. The validations were carried out in seven Sentinel-3A/B overpasses in 2019. Our results show that the uncertainty of the Sentinel-3 Level-2 altimetry product is below decimetre level on the Estonian coast and the targeted lakes. Results from CMEMS Level-3 showed a correlation of 0.8 (RMSE 0.19 m) and 0.91 (RMSE 0.27 m) when compared against tide gauge measurements and NEMO model, respectively.
Subject Areas
Sea level; GNSS; NEMO reanalysis; tide gauges; pressure buoys; geoid model; CMEMS; Copernicus
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.
Leave a public commentSend a private comment to the author(s)